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Abstract We describe a novel framework for modelling
railway interlockings which has been developed in conjunc-
tion with railway engineers. The modelling language used
is CSP||B. Beyond the modelling we present a variety of
abstraction techniques which make the analysis of medium-
to large-scale networks feasible. The paper notably intro-
duces a covering technique that allows railway scheme plans
to be decomposed into a set of smaller scheme plans. The fini-
tisation and topological abstraction techniques are extended
from previous work and are given formal foundations. All
three techniques are applicable to other modelling frame-
works besides CSP||B. Being able to apply abstractions
and simplifications on the domain model before perform-
ing model checking is the key strength of our approach. We
demonstrate the use of the framework on a real-life, medium-
size scheme plan.

Keywords Railway verification · CSP · B ·
Model checking · Safety

1 Introduction

Formal verification of railway control software has been
identified as one of the “grand challenges” of computer
science [13]. This challenge comes in two parts. The first
addresses the question of whether the proposed mathematical
models faithfully represent the railway domain; verifications
must translate to guarantees in the real world. The second
addresses the question of how to employ available technolo-
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gies effectively; analyses must be doable in practice and not
just in theory.

In a series of papers [23–26] we have been developing
a new modelling approach for railway interlockings. This
work is carried out in conjunction with railway engineers
drawn from our industrial partner. By involving the rail-
way engineers from the start, we benefit twofold: they pro-
vide realistic case studies; and—more importantly—they
guide the modelling approach, ensuring that it is natural
to the working engineer and incorporates all relevant con-
cerns. Our approach thus addresses the first part of the grand
challenge.

We base our modelling approach on CSP||B [34], which
combines event-based with state-based modelling. This
reflects the double nature of railway systems, which involves
events such as train movements and—in the interlocking—
state-based reasoning. In this sense, CSP||B offers the means
for the natural modelling approach we strive for. The for-
mal models are, by design, close to the domain models;
to the domain expert, this provides traceability and ease of
understanding. Our industrial partners can use our modelling
approach, and readily recognise it to be fully faithful to their
real-world concerns.

In addressing the second part of the grand challenge, we
face the wider challenge for formal methods of overcoming
state space explosion. Having rendered a real-world problem
into a modelling language, it remains a mystery in general
as to how to decompose a verification problem into tractable
pieces whose solutions can be composed together to provide
a solution to the initial problem. Our approach is to carry out
abstractions at the domain level, thus avoiding the lack of
general compositional techniques in modelling languages.

We have developed three abstraction techniques which
have proven successful in practice, both in isolation and taken
together:

123



686 P. James et al.

1. Finitisation reduces the number of trains that need to be
considered to prove safety for an unbounded number of
trains;

2. Covering decomposes the network into a set of sub-
networks in a compositional fashion: proving correctness
results for the sub-networks suffices to infer the correct-
ness of the whole network; and

3. Topological abstraction reduces the number of tracks
in the topology of the network, so as to minimise
the size and complexity of the network prior to its
analysis.

The second abstraction technique is a particular strength of
our approach. Winter [38] theorised on the possibility of such
compositional proof strategies for the railway domain, but to
our knowledge there has since been no practical solution.
This is the notable contribution of this paper which has not
been presented in our previous work. The other techniques
in this paper build upon their presentation in [24]. Firstly, we
further reduce the number of trains that need to be considered
during analyses. Secondly, we improve upon the topologi-
cal abstraction technique as a consequence of having more
detailed CSP||B models in this paper.

The verification that we focus on in this paper is the safety
verification of three safety conditions: collision freedom, run-
through freedom and no derailment. Our verification extends
beyond checking the correctness of the configuration data
of an interlocking. We address behavioural safety since we
concern ourselves with train movements in our CSP||B mod-
els. Nonetheless, our modelling abstracts from the real-time
behaviour of the interlocking and of the network as a train
passes through it.

The paper is organised as follows. In Sect. 2, we introduce
the traditional engineer’s view of railway concepts, including
a presentation of a complex real-life example which we shall
use as a case study. We also outline three safety conditions
that we will concentrate on verifying. In Sect. 3, we outline
our approach to verification in general terms independent of
any modelling language, as well as then outline a domain-
specific modelling language on which we will base our mod-
elling. In Sect. 5, we present our specific modelling language
CSP||B, and apply this language to the railway domain in
Sect. 6.

Having outlined the modelling framework, the next three
sections of the paper outline our abstraction techniques:
Sect. 7 presents finitisation, Sect. 8 presents covering and
Sect. 9 presents topological abstraction. In Sect. 10, we
present experimental results demonstrating the effectiveness
of the abstractions. In Sect. 11, we discuss related approaches
to the railway verification problem. Finally, in Sect. 12, we
recapitulate our achievements and outline directions of future
research.

2 Railway systems

Together with railway engineers, we have developed a com-
mon view of the information flow in railways. In physical
terms, a railway consists of (at least) the four different com-
ponents shown in Fig. 1.

– The controller selects and releases routes for trains.
– The interlocking serves as a safety mechanism with regard

to the controller and, in addition, controls and monitors the
track equipment.

– The track equipment consists of elements such as signals,
points and track circuits. Signals can show the aspects
green or red; points can be in normal position (leading
trains straight ahead) or in reverse position (leading trains
to a different line); and track circuits detect if there is a
train on a track.

– Finally, Trains have a driver who determines their behav-
iour.

For the purposes of modelling, we have made the simpli-
fication to only consider two aspect signalling; we do not
consider the additional aspects of caution or speed limits.
We also make the assumption that track equipment reacts
instantly and is free of defects. We furthermore assume that
trains are shorter than the track segments in the network. In
[15], we address the question of how to extend our modelling
framework to deal with lengths of track segments and trains.

The information flow shown in Fig. 1 is as follows: the
controller sends a request message to the interlocking to
which the interlocking responds; the interlocking sends sig-
nalling information to the track equipment and receives infor-
mation from track sensors on whether a track element is occu-
pied. The interlocking and the trains interact indirectly via the
track equipment only. The interlocking serves as the system’s
clock: in a cycle the status of all the track sensors are read
then the interlocking reacts to all of them with one change of
state. Routes cannot be in conflict since requests to select and

Fig. 1 Information flow
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Techniques for modelling and verifying railway interlockings 687

Fig. 2 Track plan based on Langley Station

Fig. 3 Control table and release tables for Langley Station track plan

release routes are sequentialised. In our modelling we will
abstract away from modelling the track equipment explicitly.

In this paper, we analyse a track layout based on Langley
Station, a nontrivial station just to the west of London which
is used by over 700,000 people each year [31], and consid-
ered to be a medium-size station in the UK. Figures 2 and 3
depict the scheme plan for the station comprising a track plan,
a control table and release tables. The track plan is publicly
available from [29]; however, as signalling rules are confi-
dential, our control and release tables are of our own design,
though they have been attested by our industrial partners as
being realistic.

We explain our modelling approach here with reference to
our Langley Station example. In general, we adhere closely

to the established principles laid out in [30]. Following the
approach of Bjørner [4], we view a track plan as being built
from tracks, connectors, signals and points. Each track is
associated with two connectors (or three if the track con-
tains a point). Two tracks are attached together if they share
a connector. Each track is also associated with a direction
consisting of a (directed) pair of their associated connectors
(or two pairs if the track contains a point). Thus a pair (c1, c2)

in the direction of a track indicates that trains can travel on
that track from c1 to c2, c1 being the connector linking the
track to the previous track and c2 being the connector linking
the track to the subsequent track. For example, the Langley
Station track plan of Fig. 2 consists of 49 tracks (e.g. the
tracks EN1 and DA), 61 connectors (e.g. the connector c2
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attaching the track EN1 and DA), 16 signals (e.g. S10 and
S12), and 16 points (e.g. P101 and P102). Note that the tracks
include entry and exit tracks on which trains can “appear” and
“disappear” (e.g. EN1, EX1). These two kinds of tracks are
specially treated during verification.

An interlocking system gathers train locations and sends
out commands to control signal aspects and point positions.
The control table determines how the station interlocking
system sets signals and points. For each route of a signal,
there is one row describing the condition under which the
signal can show proceed. There are two rows for signal S12:
one for route R12A and one for route R12B where, for exam-
ple, signal S12 can only show proceed when points P101
and P202 are in the normal (straight) position and tracks
DC, DD, DE, DF are all clear.

The normal direction of a point in a track plan is indicated
by an uninterrupted line (from connector c5 to connector c6),
the reverse direction with an interrupted line (from connector
c5 to connector c12).

Note that we do not assume that trains are equipped with
an Automatic Train Protection system which prevents trains
from moving over a red light; thus overlaps are needed, e.g.
the overlap for route R12A is DF, and hence DF is included in
the control table. Trains are assumed to overrun a red signal
by maximally one track. In case that such an overrun has
happened, trains are assumed to halt.

The interlocking also allocates locks on points to particular
route requests to keep them locked in position and releases
such locks when trains have passed. For example, the setting
of route R12A obtains a lock on point P101 and sets it to
normal. The lock is released after the train has passed the
point. This mechanism allows for the implementation of flank
protection. The release tables store the relevant track, which
is the track after the point.

In this setting, we consider three safety properties:

1. Collision freedom excludes two trains occupying the
same track;

2. Run-through freedom says that whenever a train enters a
point, the point is set to cater for this; e.g. when a train
travels from track DF to track DG, point P102 is set so
that it connects DF and DG (and not UJ and DG);

3. No derailment says that whenever a train occupies a point,
the point does not move.

The correct design for the control table and release tables is
safety critical: mistakes can lead to a violation of any of the
three safety properties.

3 Verification workflow

In Fig. 4 we depict the verification workflow employed by
our approach. Starting from a scheme plan of a railway

Fig. 4 Verification workflow

system represented in a domain specific language (DSL)
[8,21]—bottom left—we transform this scheme plan into
a concrete specification SPC—bottom right. This may be
in any of a number of specification languages (e.g. CASL,
CSP, Timed CSP and CSP||B) depending on the approach.
However, regardless of the formalism, the specification will
inevitably be too complex for analysis. To remedy this,
some form of abstraction is applied to the scheme plan to
produce an abstract scheme plan—top left—which is then
transformed into an abstract specification SPA—top right.
With appropriate abstraction correctness results, verifica-
tion proofs carried out on the abstract specification SPA

imply the relevant correctness of the concrete specifica-
tion SPC . For example, we have used this approach with
topological abstractions in the context of CASL [14] and
CSP||B [24], with a covering abstraction in the context of
CSP [22], and with a finitisation abstraction in the context of
Timed CSP [12].

4 A railway DSL

Here, we present a general (mathematical) model of railway
networks inspired by the work of Bjørner [4]. We imple-
mented this model in our tool OnTrack [17] which also
includes an automated transformation of this model into a
CSP||B specification.

A railway network is provided by a scheme plan SP =
(Top, CT, RTs) which comprises a track plan Top defining
the topology of the railway network, a control table CT and
a set RTs of release tables. Note that our model is a loose
specification of a railway scheme plan. For our purposes,
this under-specification has proven to be sufficient.

4.1 Topology

Let Track and Point denote two disjoint, finite sets of tracks
and points, respectively. Tracks and points are collectively
referred to as units, and we let Unit = Track � Point.
There is a set Connector whose elements serve as glue
between nodes. A track t, having two endpoints, has two
distinct connectors, whereas a point p, having three end-
points, has three distinct connectors; we write connectors(u)
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Techniques for modelling and verifying railway interlockings 689

Fig. 5 A point example

to denote the set of all connectors of a unit u. A pair
(c1, c2) ∈ Connector×Connector indicates that a train can
travel on a unit u from c1 to c2, where c1, c2 ∈ connectors(u).
In our setting, a track t can be passed in one direction
only; in contrast, a point p is associated with two direc-
tions where opposing directions and movement between
two specific branches are excluded, e.g. in Fig. 2 move-
ment between connector c6 and c12 is not permitted. The
two positions that a point can have are called normal and
reverse where directions(p) = normal(p) � reverse(p). The
direction of a unit can be read as the “intended use” of the
unit, which the signal engineer provides when designing the
routes, the control table and release tables. Given a direction
d = (c1, c2) ∈ directions(t) of a track or point t, we denote
from(d) = c1, to(d) = c2.

A path P = 〈(u1, d1), . . . , (uk, dk)〉, k ≥ 1, in a rail-
way topology, is a non-empty sequence of units and their
directions without direct repetitions: to(di) = from(di+1)

and ui �= ui+1 for all 1 ≤ i < k. As usual, hd(P) = u1 and
last(P) = uk , and u ∈ P if u = ui for some 1 ≤ i ≤ k. When
the connectors are clear, we also write 〈u1, . . . , uk〉 for P.

Note that the composition of two paths is not necessarily
a path as direct repetitions are excluded. A typical example
is shown in Fig. 5.

Here, 〈A, C〉 is a path and 〈C, B〉 is a path; however,
〈A, C, C, B〉 is not a path. Note however that any non-empty
subsequence of a path is a path.

For convenience, we define two functions successor :
Unit → ℘(Unit) and predecessor : Unit → ℘(Unit) as
follows:

• successor(u) = {x ∈ Unit | ∃ c1, c2, c3 ∈ Connector :
〈(u, (c1, c2)), (x, (c2, c3))〉 is a path}, and
• predecessor(u) = {x ∈ Unit | ∃ c1, c2, c3 ∈ Connector :
〈(x, (c1, c2)), (u, (c2, c3))〉 is a path}.

Units without predecessors are called entries and units
without successors are called exits. In the context of this
paper, we consider only track plans where entries and exits
are tracks, and denote the set of entry and exit tracks as

– Entry = {t ∈ Track | predecessor(t) = ∅} and
– Exit = {t ∈ Track | successor(t) = ∅}.

We assume a set Signal of signals, along with a labelling
function signalAt : Signal → Track indicating tracks at

Fig. 6 An illustration of the route definition

which signals are placed. Each track may be labelled by at
most one signal: for each t ∈ Track, signalAt(s) = t for
at most one s ∈ Signal. Signals are placed at the end of a
track to protect the successor track. We require that there is
a signal at every entry track. Without such an entry signal,
trains could unrestrictedly enter the scheme plan. This would
cause collision on the successor of an entry track. Note that
the typing of the function signalAt ensures that signals are
never placed at a point—which follows standard practice in
railway engineering.

As we deal with open railway topologies, we need to give
two different definitions of what a route is: the first definition
caters for the case in which the route is completely within the
railway topology, while the second definition caters for the
case in which a route ends at the border of the topology—see
Fig. 6. A path r = 〈u1, . . . , uk〉 is a topological route if one
of the following holds:

– there is a unit u0 such that

〈u0, u1, . . . , uk〉

is a path in which u0 and uk−1 are labelled with signals,
but there are no signals on u1, . . . , uk−2. In this case, uk

is called the overlap of r; or
– there are units u0 and uk+1 such that

〈u0, u1, . . . , uk, uk+1〉

is a path, u0 is labelled with a signal, there are no signals
on u1, . . . , uk and uk+1 is an exit track.

In both cases, we define topoUnits(r) = {u1, . . . , uk} and
topoSignal(r) = s where signalAt(s) = u0. Finally, we let
TopoRoute denote the set of all topological routes in the rail-
way topology, so that topoUnits : TopoRoute → ℘(Unit)
and topoSignal : TopoRoute→ Signal.

4.2 Control table

The control table determines the logic for controlling sig-
nals and points in the railway network. It specifies conditions
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when routes can be set which effectively leads to the control
of signals’ aspects and of points’ positions.

Let Route be a set of route names and topoRoute :
Route → TopoRoute a function associating topological
routes to route names. The function topoRoute is not nec-
essarily surjective as there can be topological routes which
a signaller cannot control. For example in Fig. 3, the con-
trol table does not include a route corresponding to the
topological route in Fig. 2 from the signal S12 to the exit
track EX1—from track DB down to track DRG (points
P101, P202, P203 and P303 all in reverse position) and
then again up to track DH (points P304, P204, P205 and
P102 all in reverse position). We allow for several entries
in the control table that are associated with one topologi-
cal route. The function signal : Route → Signal gives
the entry signal of the corresponding topological route, i.e.
signal(r) = topoSignal(topoRoute(r)). The function units :
Route→ ℘(Unit) gives the set of units of the corresponding
topological route, i.e.

units(r) = topoUnits(topoRoute(r)).

The control table specifies, for each route r ∈ Route: a
set clear(r) of tracks and points to be clear; a set normal(r)
of points to be in the normal position; and a set reverse(r)
of points to be in the reverse position. Informally, when all
units in clear(r) are unoccupied, all points in normal(r) are
in the normal position, and all points in reverse(r) are in the
reverse position, route r can be set which effectively changes
the aspect of signal(r) to “proceed”.

Note that there are in general no restrictions on how a
control table looks, i.e. signalling engineers are allowed to
write down anything. We define the clear, normal and reverse
tables to be the columns of a control table.

4.3 Release tables

Each point is associated with a release table which specifies
when to remove a lock from this point. Release tables are
mappings release : Point → ℘(Route × Unit). Given an
entry (r, t) ∈ release(p), informally, when a train reaches
the unit t, the lock r is released from the point p, i.e. the point
can be moved again, provided there is no other lock on it.

4.4 Well-formedness conditions

We postulate some conditions on a scheme plan formulated
in our DSL. These conditions ensure a minimal consistency
between the signalling of routes in the control and release
tables on the one hand, and their topological extent as defined
by the railway topology on the other hand. These conditions
allow for simple static checks.

Definition 1 A scheme plan is well formed if the following
conditions hold:

1. (Release-Table condition) Locks of a route can only be
released by a train movement on that route:

∀ r ∈ Route, p ∈ Point, t ∈ Track :
(r, t) ∈ release(p)⇒ t ∈ units(r).

2. (Clear-Table condition) The clear table of a route contains
at least the tracks of this route:

∀ r ∈ Route : {t | t ∈ units(r)} ⊆ clear(r).

3. (Normal/Reverse-Table condition) Every point on a route
is in either the normal table or the reverse table of that
route:

∀ r ∈ Route : {p ∈ Point | p ∈ units(r)}
⊆ normal(r) ∪ reverse(r).

4. (Route condition) Topologically different routes that
share some points are distinguishable by at least one point
position of these shared points:

∀ r1, r2 ∈ Route :
r1 �= r2 ∧ sharedPoints(r1, r2) �= ∅ ⇒
∃ p ∈ sharedPoints(r1, r2) :
p ∈ reverse(r1) ∩ normal(r2) ∨
p ∈ reverse(r2) ∩ normal(r1)

where sharedPoints(r1, r2) = units(r1) ∩ units(r2) ∩
Point.

All scheme plans that we looked at together with our
industrial partners were fulfilling these conditions.

5 Background to CSP||B

The CSP||B approach allows us to specify communicat-
ing systems using a combination of the B-Method [1] and
the process algebra Communicating Sequential Processes
(CSP) [11]. The specification of a combined communicat-
ing system comprises two separate specifications: one given
by a number of CSP process descriptions and the other by a
collection of B machines. Our aim when using B and CSP is
to factor out as much of the “data-rich” aspects of a system
as possible into B machines. The B machines in our CSP||B
approach are classical B machines, which are components
containing state and operations on that state. The CSP||B the-
ory [34] allows us to combine a number of CSP processes Ps
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in parallel with machines Ms to produce Ps ‖ Ms which is the
parallel combination of all the controllers and all the under-
lying machines. Such a parallel composition is meaningful
because a B machine is itself interpretable as a CSP process
whose event traces are the possible execution sequences of
its operations. The invoking of an operation of a B machine
outside its precondition within such a trace is defined as
divergence [27]. Therefore, our notion of consistency is that
a combined communicating system Ps ‖ Ms is divergence
free. We do not consider deadlock freedom in this paper as it
is concerned with liveness, and the focus of the paper is on
safety.

A B machine clause declares a machine and gives it a
name. The variables of a B machine define its state. The
invariant of a B machine gives the type of the variables, and
more generally it also contains any other constraints on the
allowable machine states. There is an initialisation which
determines the initial state of the machine. The machine con-
sists of a collection of operations that query and modify the
state. Operations take one of two forms:

• Preconditioned operation—pre P then S end: if this is
called when P holds then it will execute S, otherwise it
will diverge.
• Guarded event—select P then S end: this will execute

S when P holds, and will block when P is false.

Besides this kind of machine, we also define static B
machines that provide only sets, constants and properties that
do not change during the execution of the system.

The language we use to describe the CSP processes for B
machines is as follows:

P ::= c?x!y→ P(x) P1 � P2 P1 � P2

if b then P1 else P2 end N(exp)

P1 ‖ P2 P1 A‖B P2 P1 ||| P2

The process c?x!y → P(x) defines a channel communica-
tion where x represents all data variables on a channel, and
y represents values being passed along a channel. Some of
these channels match with operations in a corresponding B
machine with the signature x ←− c(y). Therefore the input
y of the B operation c corresponds to the output from the
CSP, and the output x of the B operation to the CSP input.
Here, we have simplified the communication to have one
output and one input, but in general there can be any num-
ber of inputs and outputs. The external choice, P1 � P2, is
initially prepared to behave either as P1 or as P2, with the
choice being made on occurrence of the first event in the envi-
ronment. The internal choice, P1 � P2, is similar; however,
the choice is made by the process rather than the environ-
ment. Another form of choice is controlled by the value of
a Boolean expression in an if expression. The synchronous

parallel operator, P1 ‖ P2, executes P1 and P2 concurrently,
requiring them to synchronise on all events. The alphabetised
parallel operator, P1A‖BP2, requires synchronisation only in
A ∩ B, allowing independent performance of events outside
this set. The interleaving operator, P1 ||| P2, allows concur-
rent processes to execute completely independently. Finally,
N(exp) is a call to a process where N is the process name and
exp is an expression.

For reasoning of CSP||B models, we require the following
notation. A system run σ (of a CSP||B model) of length n ≥ 0
is a finite sequence

σ = 〈s0, e1, s1, e2, . . . , en, sn〉
where the si, i = 0 . . . n, are states of the B machine and the
ei, 1 ≤ i ≤ n, are events. Here, we assume that s0 is a state
after initialisation. Given a system run σ , we can extract its
trace of events:

events(σ ) = 〈e1, . . . , en〉.

6 Modelling railway systems in CSP||B

As outlined in [25], CSP||B caters for the double nature of
railways by addressing the state and data aspects separately:
the interlocking as the “data-rich” component is modelled as
a single, dynamic B machine, the Interlocking machine. It
represents the centralised control logic of a rail node, which
reacts to its environment without taking any initiative. The
Interlocking machine offers to perform events in the form
of operations to the two active system components: the con-
troller and the trains, both of which are modelled as CSP
processes. The full CSP||B model is given in Appendix A.

To tailor the CSP||B model to the ProB [19] tool which
we are using for analysis, we put the DSL model of Sect. 3
into a particular form. For example, in the DSL the release
table is given by release : Point→ ℘(Route×Unit). How-
ever, when considering the movement of trains it is more
efficient to capture the information indexed by the track, so
the locks released on any particular move are given directly
by the position the train has moved to. In the B description we
use the name releaseTable for explicitness. The relationship
between the DSL terminology and the CSP||B terminology
is given in Fig. 7. The main difference is the use of Point as
the name of the point (e.g. P101) rather than the unit asso-
ciated with it (e.g. DD), and the use of Track to cover both
kinds of units. However, this is mainly a matter of conve-
nience and it is straightforward to translate between the two
approaches. For the purposes of this paper we consider tracks
to be unidirectional.

The trains and controller processes run independently of
each other, on the CSP level expressed with an interleaving
operator—see Fig. 8 (lines 20 and 21). It is a decision of
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Fig. 7 Relationship between DSL terminology and CSP||B terminol-
ogy

Fig. 8 CSP control processes for controller and trains

the controller which routes are requested to be set or to be
released (lines 2–4). Similarly, it is a decision of the train
to move through a red light by maximally one track and
subsequently stop or to wait for a signal change (lines 13–
15). This logic is sometimes referred to as the driving rules
of a train.

The Interlocking machine captures information about the
location of trains on tracks using the function pos : Train→
AllTrack where pos(t) gives the location of the train t. The
position of a train consists of exactly one track. It is here we
assume that the train’s length is smaller than that of a track.

The set AllTrack represents all the tracks and the spe-
cial nullTrack which denotes a nonvalid track used for mod-
elling run-through. The machine also captures the current
information about successor tracks through a dynamic func-
tion nextd : AllTrack→ AllTrack which is dependent upon
the position of the points. Furthermore, the machine cap-
tures information about signal settings using the function
signalStatus, last moved points using the set movedPointsand
point settings using the sets normalPointsand reversePoints.
Finally, the current locks on points are modelled using cur-
rentLocks. The initial state of the model sets all tracks to
being empty, all signals to red, all points to the normal posi-

Fig. 9 Release operation from Interlocking

Fig. 10 Architecture

tion and no locks are made on points. This dynamic state is
then updated and queried, respectively, in the six operations
of the Interlocking machine.

Figure 9 shows the full B code of a typical operation of the
Interlocking machine. It describes how a release request from
the controller is processed. The release is granted provided
a number of conditions are fulfilled (the signal of the route
is green, line 6, there are points locked for the route, line 8,
etc.). In such a case, a number of state changes are made (the
signal of the route is set to red, line 16, etc.) and the controller
is notified with a “yes” (line 20). Otherwise, the state does
not change and the controller is notified with a “no”. Note
that a signal of a route may also be set to red when a train
occupies the first track section of the route, to avoid several
trains to enter the route.

Figure 10 shows the overall architecture of our modelling.
The CSP controller and the Interlocking machine are inde-
pendent of any particular scheme plan. They are supported
by a Topology, a ControlTable, a ReleaseTable and a Con-
text machine. These four machines encode the scheme plan
and are the parameters in our generic approach. Seen as B
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machines, these four supporting machines are stateless. A
typical example from the ControlTable machine which splits
up the modelling of a control table into two relations and one
function is given as follows:

normalTable ∈ Route↔ Point ∧
reverseTable ∈ Route↔ Point ∧
clearTable ∈ Route→ P(Track)

A predicate is used to define the relationship between the
Interlocking machine and the CTRL process relates the train
parameter t and the train position pos of the TRAIN CTRL
process to the pos function within the Interlocking machine.
This control loop invariant predicate must hold at each recur-
sive call, and hence the system is divergence free.

The Interlocking machine uses guarded events to model
the safety properties. The guards are enabled in unsafe states
which will violate our safety properties. Use of these guarded
events does not impact on the divergence freedom require-
ment of a CSP||B model since they have no affect on the state
and do not themselves diverge.

In Sect. 2 we introduced the collision freedom property.
In our B machine, we encode an operation which captures
the notion of a collision, as follows:

1 collision =
2 SELECT
3 ∃ t1, t2 ∈ Train : t1 �= t2 ∧
4 ({pos(t1)} ∩ {pos(t2)}) \ (Exit ∪ Entry ) �= ∅
5 THEN skip
6 END;

Here, collision is detected when two different trains t1 and t2
occupy the same track segment (different from the Exit and
Entry tracks). This is recognised in the pos function which
maps trains to the track segments they occupy; the collision
condition will be enabled when the two trains are at the same
position.

Collision freedom can then be established by model
checking the validity of the following CTL formula:

AG(not(e(collision)))

This formula is false if collision is enabled. In the CTL variant
of ProB AG stands for “on all paths it is globally true that”,
and e(a) stands for “event a is enabled”.

7 Finitisation

In this section, we develop a theory of how to reduce the
problem of verifying of scheme plans for safety (i.e. freedom
from collision, derailment and run-through) for any number
of trains to that of a two-train scenario. We introduced this
idea first for run-through freedom in [24]. Here, we give
full proofs on a slightly more involved CSP||B model and
generalise it to collision freedom and derailment freedom.

Finitisation requires scheme plans to fulfil a number
of well-formedness conditions as outlined in Sect. 4.4. In
Sect. 7.1 we establish a reduction theorem (Theorem 3) for
such well-formed scheme plans w.r.t. the number of trains
involved in a system run. If we are only interested in the
movements of a finite set of trains in a given system run—say
in the movements of two trains which collide in this system
run—then we can define a new system run with “exactly the
same movements” for just this selected set of trains.

Finitisation works for well-formed scheme plans as it is
possible to simulate the influence that one train can have on
other trains by suitable route request and release commands.
The validity of this finitisation argument for safety is demon-
strated in Sect. 7.2.

Given a scheme plan SP, and an unlimited collection Train
of trains, we write CSP ||B(SP, Train) for the instantiation
of our generic CSP||B model with SP and Train. Note that
CSP ||B(SP, Train) in general is an infinite state system due
to the inclusion of train identifiers into events and states. We
call our theory “finitisation”, as it reduces the safety problem
over an infinite state system to a safety problem over a finite
state system, namely to CSP || B(SP, Train) where the set
Train of trains contains two elements only.

7.1 A reduction theory

We start the development of our reduction theory with a sim-
ple observation on our CSP||B models. If a signal shows
green in a state of a system run, then there exists a uniquely
determined route for which, in the past, a route request must
have been granted by the interlocking.

Theorem 1 Let σ be a system run of CSP || B(SP, Train)

for a scheme plan SP and a set Train of trains. Prior to any
state in which a signal sig ∈ Signal shows green, there is a
uniquely determined event in σ of the form request.r.yes for
some r ∈ Route which caused that signal to become green.
We sometimes speak of the uniquely determined route r that
has been granted.

Proof By definition of the B machine Interlocking, a signal
is set to green only by the event request (i.e. when a route
is successfully requested). Conversely, a signal is set to red
only by the events move and release (i.e. when a train passes a
signal and when a route is successfully released). Analysing
a system run where sig is green in the last state yields that
the route is uniquely determined. ��

In the following we show that for every system run σ

involving a set A � B of trains there exists a system run σ ′
which involves trains only from A, and where the trains from
A move identically to σ . In particular: if trains from A collide
in σ , then they collide in σ ′; if a train in A derails in σ , then
it derails in σ ′; and if a train has a run-through in σ, then the
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same happens in σ ′. We obtain σ ′ constructively from σ by
defining a replacement function on events. To this end, we
first identify those events which are related to B.

Definition 2 Given a set B of train identifiers, we define the
set E(B) of events of B as

E(B) = {enter.b | b ∈ B} ∪
{exit.b | b ∈ B} ∪
{nextSignal.b | b ∈ B} ∪
{move.b.cp.np | b ∈ B ∧ cp, np ∈ AllTrack}

The next step is to define the replacement function which
is dependent on the current state.

replaceB(S, e) =

• e, if e /∈ E(B);
• release.r.yes, if e = move.b.cp.np for some b ∈ B and
∃ s ∈ Signal such that

– homeSig(s) = cp,
– signalStatusS(s) = green,
– ∃!r ∈ Route : signal(r) = s, and
– currentLocksS(r) = lockTable(r);

• idle, otherwise.

Note that, in the above definition, when we replace a for-
ward move event move.b.cp.np in front of a green signal by a
route release event release.r.yes, Theorem 1 guarantees the
existence of such a unique route r.

To cater for this model transformation, we enriched our
CSP||B model with an event idle that does nothing. On
the CSP side, this means the addition of a new process
IDLE = idle → IDLE to the controller; on the B side, this
means the addition of a new operation idle = movedPoint :=
∅.. This process is only needed for the justification of our
model transformation; it is not required for the verification of
safety.

Removing the trains in the set B from a system run also
affects the states of the B machine. For example, one com-
ponent of a B machine state S is the mapposS : Train →
AllTrack which stores for each train the track it occupies and
the direction it moves. Recall from Sect. 6 that AllTrack con-
tains the special nullTrack for modelling run-through. If we
remove the trains in B, we would hope that for the corre-
sponding state T the following relation holds:

posT = posS|(Train\B).

That is, the mapping posT should be the same as posS, but
be defined over the restricted domain Train \ B. The corre-
spondence between states may, however, be more than just
a projection onto the remaining trains. This consideration
motivates the following definition.

Definition 3 Let S and T be states of the B machine of CSP ||
B(SP, Train) and let B ⊆ Train be a set of trains. State T
is in B-correspondence to state S, written T ≤B S, iff the
following nine conditions are fulfilled.

f.1: posT = posS|(Train\B).
f.2: nextdT = nextdS .
f.3: signalStatusT = signalStatusS .
f.4: normalPointsT = normalPointsS .
f.5: reversePointsT = reversePointsS .
f.6: movedPointsT = movedPointsS .
f.7: ∀ r ∈ Route.

currentLocksT [{r}] = currentLocksS[{r}] or
currentLocksT [{r}] = ∅.
(The run without the trains of B either has the same locks
for a route or none at all.)

f.8: ∀ s ∈ Signal . if signalStatusS(s) = green then there is
a unique r ∈ Route such that

signal(r) = s,

currentLocksS(r) = lockTable(r), and

currentLocksT (r) = lockTable(r).

(If a signal is green, then there exists exactly one route
associated with that signal which is set.)

f.9: ∀ b ∈ B, r ∈ Route . if posS(b) ∈ units(r) then
currentLocksT (r) = ∅.
(The locks of any route that contains a track segment
occupied by a train b ∈ B in state S have been released
in state T .)

With the above correspondence in place, we want to establish
the following simulation properties:

(a) For states S and T with T ≤B S, if event e is enabled in
S, then replaceB(S, e) is enabled in T ;

(b) furthermore, the states S′ and T ′ which result from per-
forming these events are themselves in B correspondence,
i.e. T ′ ≤B S′.

The following diagram illustrates this situation:

We establish these two properties under a condition on the
set B. We say that the trains in B never cause a collision in a
system run, if in this run the collision event is never enabled
with a train t ∈ B as a witness, i.e. if there is no state in which
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∃ t1, t2 ∈ Train : t1 �= t2 ∧ ({pos(t1)} ∩ {pos(t2)}) \ (Exit ∪
Entry ) �= ∅ ∧ (t1 ∈ B ∨ t2 ∈ B).

Lemma 1 Given a scheme plan SP and a set Train of trains
containing B ⊆ Train, if σ is a system run of CSP ||
B(SP, Train) in which trains in B do not cause a colli-
sion, then replaceB(σ ) is a system run of the B machine of
CSP ||B(SP, Train \ B).

Proof The proof is by induction on the length of σ . The
base case is trivial, and the induction cases are generally
unproblematic. ��

Lemma 1 allows us to extend the function replaceB to
system runs σ = 〈S0, e1, S1, . . . , ek, Sk〉 as follows.

replaceB(σ ) = 〈T0, replaceB(S0, e1), . . . ,

Tk−1, replaceB(Sk−1, ek), Tk〉
Here, T0 = S0 (the initial state). Lemma 1 guarantees that
for all 1 ≤ i ≤ k, replaceB(Si−1, ei) is enabled in Ti−1 and
leads to Ti with Ti ≤ Si.

With this result in place, we show that the events of
replaceB(σ ) give a trace of the CSP controller.

Lemma 2 Given a scheme plan SP and a set Train of trains
containing B ⊆ Train, if σ is a system run of CSP ||
B(SP, Train), then events(replaceB(σ )) is a trace of the CSP
controller CTRL(SP, Train \ B).

Proof Using process algebraic laws, one shows that pro-
jections of the trace events(replaceB(σ )) are traces of the
individual processes out of which the controller process
CTRL(SP, Train \ B) is built. ��

Combining these two lemmas gives the following result.

Theorem 2 Given a scheme plan SP and a set Train of
trains containing B ⊆ Train, if σ is a system run of CSP ||
B(SP, Train) in which trains in B do not cause a collision,
then replaceB(σ ) is a system run of CSP ||B(SP, Train \ B).

Proof Let σ be a system run of CSP || B(SP, Train). By
Lemma 1 we know that replaceB(σ ) is a run of the B machine
M of CSP || B(SP, Train \ B), and in particular we have
that events(replaceB(σ )) ∈ traces(M). By Lemma 2 we
know that replaceB(σ ) ∈ tracesCTRL(SP, TRAIN). Thus,
by the semantics of CSP||B, replaceB(σ ) is a system run of
CSP ||B(SP, Train \ B). ��

7.2 Verification for safety

Safety in the models is dependent on the number of trains
which are introduced into the model. This motivates the fol-
lowing definition.

Definition 4 Let

ERROR = {collision, derailment, run− through}
be the set of error events of interest.

– A scheme plan SP is n-e-free (for n ∈ N>0 and e ∈
ERROR) iff e is never enabled in any state of any σ ∈
CSP ||B(SP, Train) with |Train| = n.

– A scheme plan SP is safe iff it is n-e-free for all n ∈ N>0

and e ∈ ERROR.

We can now turn Theorem 2 into a proof method. The
following Corollary is the basis of finitisation.

Corollary 1 A scheme plan SP is safe if it is 2-collision free,
1-derailment free and 1-run− through free.

Proof Assume that SP is not safe, i.e. it is not n-e-safe for
some n ∈ N>0 and e ∈ ERROR. This means that there is a
run σ of CSP ||B(SP, Train) with |Train| = n such that e is
enabled in some state of σ .

Let σ = 〈S0, e1, S1, . . . , ek, Sk〉. Without loss of general-
ity, let us assume that

• (C1) e is enabled in Sk ; and
• (C2)∀ e′ ∈ ERROR : e′is not enable in S0, . . . , Sk−1.

We consider each error type in turn.

Case 1: e = collision.

– By (C1), ∃ t1, t2 ∈ Train, t ∈ Track such that t =
posSk (t1) ∧ t = posSk (t2);

– by (C2), ek is a move of t1 or t2;
– trains in Train \ {t1, t2} do not cause collision in σ ;
– by Theorem 2, replaceTrain\{t1,t2}(σ ) is a run of CSP ||

B(SP, {t1, t2});
– Tk ≤Train\{t1,t2} Sk , where Tk is the last state in

replaceTrain\{t1,t2}(σ );
– By (f.1), t = posTk (t1) ∧ t = posTk (t2);
– collision is enabled in Tk ;
– SP is not 2-collision free.

Case 2: e = derailment.

– By (C1), ∃ t ∈ Train, p ∈ movedPointsSk such that
homePt(p) = posSk (t);

– by (C2), ek is a request.r.yes;
– trains in Train do not cause collision in σ ;
– by Theorem 2, replaceTrain\{t}(σ ) is a run of CSP ||

B(SP, {t});
– Tk ≤Train\{t} Sk , where Tk is the last state in

replaceTrain\{t}(σ );

123



696 P. James et al.

– By (f.6) and (f.1), p ∈ movedPointTk ∧ homePt(p) =
posTk (t);

– derailment is enabled in Tk ;
– SP is not 1-derailment free.

Case 3: e = run− through.

– By (C1), ∃ t ∈ Train such that nullTrack = posSk (t);
– By (C2), ek is a move of t;
– trains in Train do not cause collision in σ ;
– by Theorem 2, replaceTrain\{t}(σ ) is a run of CSP ||

B(SP, {t});
– Tk ≤Train\{t} Sk , where Tk is the last state in replaceTrain\{t}

(σ );
– By (f.1), nullTrack = posTk (t);
– run− through is enabled in Tk ;
– SP is not 1-run-through free.

��
Corollary 1 works with different numbers of trains: two

trains are needed in the case of collision, one train is needed
otherwise. To be able to check safety for all three properties
in one go, we prove the following.

Theorem 3 If a scheme plan SP is n-e-free, then SP is k-e-
free for any k < n.

Proof If SP is not k-e-safe, then there exists a run σ ∈ CSP ||
B(SP, Train) with |Train| = k such that e is enabled in some
state of σ . But σ is also a run of CSP ||B(SP, Train′) where
Train ⊆ Train′, with

∣
∣Train′

∣
∣ = n. �

8 Covering

In the following, we develop a theory of covering a scheme
plan with a set of smaller sub-scheme plans in such a way that
safety of all sub-scheme plans implies safety of the original
scheme plan.

The fundamental idea of covering is that any violation of
a safety property happens at a specific location. We can say
at which (set of) locations L a collision, a run-through or a
derailment happens in the track plan. A set of locations L can
be influenced in two different ways: (i) a train reaches a loca-
tion in L or (ii) a train releases a lock of a point which lies on
a route towards L. In Sect. 8.1 we provide a construction that,
given a set L, computes a set L∞ which is closed under both
influences listed above and includes L. The construction is
described using our DSL for the railway domain; see Sect. 4.
Thus, it is part of the domain. Consequently, the construction
is open for re-use in any modelling formalism.

In Sect. 8.2 we prove in the context of our CSP||B mod-
elling that safety of all sub-scheme plans implies safety of

the original scheme plan. First we prove: for any run σ in the
CSP||B model of the original scheme plan and for any set L
there is a corresponding run σL in the CSP||B model of the
sub-scheme plan constructed for L. From this result, we prove
as corollary: if the CSP||B models of the sub-scheme plans
are safe for all sets L to be considered for a specific safety
property, then the CSP||B model of the original scheme plan
is safe as well. Our proofs in Sect. 8.2 are tightly bound to
the language CSP||B; however, in the context of modelling
scheme plans in CSP [22], we proved as well that the covering
construction of Sect. 8.1 allows compositional verification.

8.1 Domain inherent covering construction

Given a scheme plan SP = (Top, CT, RTs) as described in
Sect. 4 and a set L ⊆ Track \ (ENTRY ∪ EXIT) of “critical
tracks”, we describe the construction of a scheme plan SPL =
(TopL, CTL, RTsL). The scheme plan SPL will be used to
investigate safety at tracks in L.

In a first step, we consider all tracks over which a train
can travel on the topology towards a track in L. Figure 11
provides an illustration for all notions introduced below.

First, we give a construction that collects the tracks of L
together with all tracks over which a train can travel on the
topology towards a track in L:

Cone(L) = {u ∈ Unit | ∃ path p : hd(p) ∈ ENTRY,

last(p) ∈ L, u ∈ p}
One can think of each element of L as the apex of a cone and
of Cone(L) as the union of these cones—see Fig. 11a.

Then, we define the set of all topological routes that share
a unit with L:

Routes(L) = {r ∈ TopoRoute |
∃ u ∈ L : u ∈ topoUnits(r)}

The Region of L consists of those units which are on a
route directly leading to L—see Fig. 11b:

Region(L) = Cone(L) ∩
⎛

⎝
⋃

r∈Routes(L)

topoUnits(r)

⎞

⎠

We close the region by adding suitable entry and exit units:

Entries(L) = (predecessor(Region(L)) \ Region(L))

∩ Cone(L)

Exits(L) = {u ∈ successor(Region(L)) \ Region(L) |
∃ path p :

hd(p) ∈ Entries(L) ∧ last(p) = u}
where the successor and predecessor functions are applied
point-wise to the set. The ClosedRegion—see Fig. 11c—
finally is

ClosedRegion(L) = Region(L) ∪ Entries(L) ∪ Exits(L)
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(a) (b) (c)

Fig. 11 Influence region (all track directions are left to right)

We illustrate this construction by an example:

Example 1 [Closed region of track DF] For track DF of the
scheme plan shown in Fig. 2, we compute:

– Cone({DF}) = {EN1, DA, DB, DC, DD, DE, DF},
– Routes({DF}) =
{〈DC, DD, DE, DF〉 , 〈DF, DG, DH〉},

– Region({DF}) = {DC, DD, DE, DF},
– Entries({DF}) = {DB},
– Exits({DF}) = {DG, UE}, and
– ClosedRegion({DF}) =
{DB, DC, DD, DE, DF, DG, UE}.

Note that we include the units of two routes into the Routes
of DF. This is the case as trains are allowed to overrun a red
signal by one track; thus 〈DC, DD, DE, DF〉 is included. UE
is an exit as there is a path from the entry DB to UE.

In the second step, we take the release tables into account
for our construction. Here, we want to include all tracks that
can release a point in ClosedRegion(L).

Given a route r ∈ Routes(L), the signal topoSignal(r) can
control further routes which not necessarily share a unit with
L. To collect these routes, we define

Signals(L) = {s ∈ Signal | ∃ r ∈ Routes(L) :
topoSignal(r) = s}

and

RouteNames(L) = {r ∈ Route | signal(r) ∈ Signals(L)}

Note that RouteNames(L) consists of names defined in the
control table rather than of topological routes.

We are now ready to define the influence zone on a track
by closing under topological influence and point releases. To
this end, we define the following iteration:

– We set L0 = L.

– For i ≥ 0, let

Li+1 = Li ∪ {t ∈ Unit \ ClosedRegion(Li) |
∃ p ∈ Point ∩ Region(Li),

∃ r ∈ RouteNames(Li) :
(r, t) ∈ release(p)}

Here, we increase the set Li of critical tracks by those
tracks in the release tables RTs which refer to a point in
Region(Li) and belong to a route which is controlled by a
signal in Signals(Li).

Let L∞ be the smallest fixed point of the iteration, i.e. the
first appearance of Li = Li+1. As the topology consists of
finitely many tracks and points, the iteration terminates.

Example 2 (Continuation of Example 1) P101 is the only
point in Region(L0). In the release table of P101, we
find {(R12A, DE), (R12B, UE)} ⊆ release(p101) for route
names in RouteNames(L0) = {R12A, R12B, R14}. Thus, DE
and UE are the potential candidates to be added to L0. As
DE, UE ∈ ClosedRegion(L0), we have L1 = L0.

Note that Entries(L) ⊆ Track thanks to the condition that
signals are never located at points. To increase the readability
of our proofs in the next section, concerning Exits(L) we add
the slightly weaker exit condition: for any point p ∈ Exits(L)

it holds that p shares exactly one connector with Region(L).
Given a set L∞ for which the exit conditions holds, we

construct a new scheme plan SPL = (TopL, CTL, RTsL) as
given in Fig. 12. The tracks of SPL are all the tracks in the
closed region of L∞ together with those points of the closed
region which are used in one direction only and thus can be
turned into tracks. The points of SPL are all points within the
closed region of L∞ which have not been turned into tracks.
For ease of construction we keep the old set of connectors.
The connectivity of the new topology is given by choosing
appropriate connectors and directions for the tracks in TrackL

and the points in PointL .
For t ∈ TrackL , we define:
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Fig. 12 The scheme plan SPL = (TopL, CTL, RTsL)

– If t ∈ Track, nothing changes, i.e. c1L(t) = c1(t) and
c2L(t) = c2(t); and directionsL(t) = directions(t).

– If t ∈ Point such that t ∈ Exits(L∞) we know that t
shares only one connector, say c, with Region(L∞). In this
case we turn the point into a track. We keep the connector
where the point joins Region(L∞) and allow travel out of
the region, i.e. we set c1L(t) = c and choose for c2L(t) one
of connectors(t) \ {c}; directions(t) = (c1L(t), c2L(t)).

– If t ∈ Point with t ∈ Region(L∞) such that one arm
of t ends outside, i.e. predecessor(t) ∪ successor(t) �⊆
ClosedRegion(L∞), we turn the point into a track. We
keep those connectors which are on a path towards
a unit in L∞ and allow travel along this path. Let
c ∈ connectors(t) be the connector leading out of
the region, i.e. for all u ∈ ClosedRegion(L∞) \ {t}:
c /∈ connectors(u). Then, choose as c1L(t) one of
connectors(t) \ {c} and define c2L(t) to be the one ele-
ment in connectors(t) \ {c, c1L(t)}; set directionsL(t) =
directions(t) ∩ {(c1L(t), c2L(t)), (c2L(t), c1L(t))}.

For p ∈ PointL nothing changes; i.e. c1L(p) = c1(p),
c2L(p) = c2(p) and c3L(p) = c3(p); and directionsL(p) =
directions(p).

8.2 Correctness proof of covering in CSP||B

Our encoding method for scheme plans into CSP||B is
generic, i.e. given a scheme plan SP, we obtain an encod-
ing CSP ||B(SP). Similarly, given a set L of critical units, we
obtain an encoding CSP ||B(SPL) of the above constructed
scheme plan SPL. In the following, we show that any run σ

on CSP ||B(SP) corresponds to a run σL on CSP ||B(SPL),
where σL is obtained from σ by renaming of events and
abstraction on the B states.

For ease of readability, we present our correctness proof
for convex scheme plans SPL only. SPL is convex, if in
SP trains cannot travel from a unit u ∈ Exits(L) to a unit
v ∈ Entries(L). In our proof practice, all scheme plans SPL

have turned out to be convex. The results presented can eas-
ily be adapted to non-convex plans by either changing the
construction of the closed region or by adding a renaming
function on train identifiers that gives a fresh identifier to a
train that enters the units of SPL a second time. Both changes,
however, lead to a plethora of notations that obscure the proof
idea.

8.2.1 Run construction

Let SP be a scheme plan, let L be a set of critical units, and
let σ be a run on CSP ||B(SP). On the states of the B machine
we define a function πL to project states of CSP ||B(SP) into
states of CSP ||B(SPL). Let S be a state of CSP ||B(SP), then
the projection of S on CSP ||B(SPL) is a state T , written as
πL(S) = T where:

cv1: posT = posS ∩ (Train× AllTrackL)

cv2: nextdT = nextdS ∩ (UnitL × AllTrackL)

cv3: signalStatusT = signalStatusS ∩ (SignalL × Aspect)
cv4: normalPointsT = normalPointsS ∩ PointL
cv5: reversePointsT = reversePointsS ∩ PointL
cv6: movedPointsT = movedPointsS ∩ PointL
cv7: currentLocksT = currentLocksS ∩ (RouteL × PointL)

This projection has some simple but important properties:

– emptyTracksT = emptyTracksS ∩ AllTrackL and
– unlockedPointsT = unlockedPointsS ∩ PointL .

In the following, we construct a sequence σL that we will
prove to be a run of CSP ||B(SPL). The sequenceσL is defined
using the function replace(S, e). replace takes a state S of the
B machine and an event e as arguments and returns an event.
The result of this function is defined according to the table in
Fig. 13: we match the structure of e against the patterns given
in the first column—e being an event of the CSP||B encoding
of our scheme plan—evaluate the condition—stated in our
DSL— to obtain the replacement event e′. Roughly speaking,
we keep all events that are within the scope of the scheme
plan SPL , and replace all events out of the scope of the scheme
plan SPL with idle.

Given a run σ = 〈S0, e1, S1, . . . , Sk−1, ek, Sk〉, k ≥ 0, we
extend the above functions πL and replaceL to sequences:

replaceL(σ ) = 〈πL(S0), replaceL(S0, e1), . . .

πL(Sk−1), replaceL(Sk−1, ek), πL(Sk)〉
Then, we define σL = replaceL(σ ). Note that states in σL are
gained by projection. This is in contrast to our construction
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Fig. 13 Definition of the
replaceL function on events for
covering

for finitisation. The difference between the constructions is
that in the case of finitisation we have a relation between
states, while in the case of covering we project states from
the original run.

8.2.2 Proving the run in CSP||B

It remains to show that σL is actually a system run on
CSP || B(SPL). To this end we want to mimic train move-
ments on the original scheme plan by entering of a train into
the scheme plan SPL—see the last row of the table in Fig. 13,
condition cp /∈ UnitL, np ∈ Entry L . This is only possible
for runs where the preconditions of the enter operation in the
B machine are true, i.e. the following enter property holds.
For all tracks t ∈ Entry L , events e = move.id.x.t ∈ σ ,
id ∈ Train, x ∈ Track, states S ∈ σ where S is the state
before e in σ , we have:

({t} ∪ successor(t)) ∩ dom(ran(posS)) = ∅,
i.e. there is no train on t or the successor of t.

Lemma 3 Given a scheme plan SP, a set L of critical units
and a run σ ∈ CSP ||B(SP) with the enter property, then

1. σL is a run of the B machine of CSP ||B(SPL).
2. events(σL) is a trace of the CSP controller of CSP ||

B(SPL).

Proof The proof is by induction on the length of σ and case
distinction on the operations. The result w.r.t. the CSP con-
troller uses process algebraic laws to decompose the con-
troller and then explicitly shows that (projections) of the
given trace are in the trace sets of the components. ��
Corollary 2 Given a scheme plan SP, a set L of critical units
and a run σ ∈ CSP ||B(SP) with the enter property, then σL

is a run of CSP ||B(SPL).

Proof By Lemma 3 and the definition of the semantics of
CSP||B. ��

8.2.3 Application to safety

It remains to utilize the above result for compositional rea-
soning concerning safety:

Corollary 3 Let SP be a scheme plan, then the following
holds:

1. If CSP || B(SPL) is collision free for all L = {u} where
u ∈ Unit\(Entries∪Exits), then CSP ||B(SP) is collision
free.

2. If CSP ||B(SPL) is run-through free for all L = {u}where
u ∈ Point, then CSP ||B(SP) is run-through free.

3. If CSP ||B(SPL) is derailment free for all L = {u} where
u ∈ Point, then CSP ||B(SP) is derailment free.

Proof Ad 1., collision freedom: assume that
CSP ||B(SP) �|� AG(¬ e(collision)). Then, according to

Corollary 1, there exists a shortest run σ of CSP || B(SP)

involving only two distinct trains id1 ∈ Train and id2 ∈
Train such that the last state of σ , say S, enables the collision
operation. Let u = posS(id1) be the track or point where the
collision occurs. Note that u /∈ Entry ∪ Exit thanks to the
precondition of the B operation collision. By construction of
SP{u}, u cannot be an entry track of SP{u} or the successor of
an entry track of SP{u}. Therefore,σ has the enter property. By
Corollary 2, we know that σ{u} is a run of CSP ||B(SP{u}). By
construction of σ{u}, its last state is T = π{u}(S). By definition
of π{u}, equation cv1, we have posT (S) = posS \ {id �→ t |
t /∈ Unit{u}}. As u ∈ Unit{u}, posT (id1) = posT (id2), i.e.
trains id1 and id2 collide in the run σ{u} of CSP ||B(SP{u}).

Ad 2., run-through freedom: assume that in the model
CSP ||B(SP) �|� AG(¬ e(runthrough)). Then, according to
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Corollary 1, there exists a shortest run σ of CSP || B(SP)

involving only one train such that the last state of σ , say
S, enables the run − through operation. For this train with
id ∈ Train it holds that posS(id) = nullTrack in S, i.e.
train id has run through a point which was not set for the
train’s direction. The last move of id in σ is of the form
e = move.id.cp.nullTrack. Let S′ be the state before e in
σ and let cp = posS′(id). Then, nextdS′(cp) is not defined.
Thus, successor(cp) ∈ Point. As any connector can belong
to at most two units, successor(cp) is uniquely defined. Let
p be this point successor(cp). Let σ ′ be the prefix of σ up to
S′ e S′′. The run σ ′ has the enter property because at most one
track is occupied in any state of σ . By Corollary 2, we know
that σ{u} is a run of CSP || B(SP{u}). By definition of π{p},
part cv1, we have posT ′′ = posS′′ \ {id �→ d | t /∈ Unit{u}}),
therefore posT ′′(id) = nullTrack, i.e. train id has run through
the point p which was not set for the train’s direction.

Ad 3., derailment freedom: assume that in the model
CSP || B(SP) �|� AG(¬ e(derailment)). Then, according
to Corollary 1, there exists a shortest run σ of CSP ||B(SP)

involving only one train such that the last state of σ , say
S, enables the derailment operation, i.e. for the train with
id ∈ Train it holds in S:

posS(id) ∈ homePoint(movedPoints)

i.e. train id has derailed at the point u = posS(id).
The run σ has the enter property because at most one track

is occupied in any state of σ . Thus, by Corollary 2, we know
that σ{u} is a run of CSP ||B(SP{u}). By construction of σ{u},
its last state is T = π{u}(S). By definition of π{u}, part cv1,
we have posT (S) = posS \ {id �→ d | t /∈ Unit{u}}. As u ∈
Unit{u}, posT (id) = posS(id). By definition of π{u} part 6,
we have movedPointsT = movedPointsS \ {p | p /∈ PointL}.
As u ∈ Point{u}, we have u ∈ movedPointsT . This means
train id has derailed. ��
Remark 1 (Localised safety) We work here with the safety
properties as originally defined in Sect. 6. In our proof prac-
tice, this approach has been always successful. However, it
is possible to define localised safety properties. For instance,
one can define the localised safety property “no collision at
unit u”. The corollary above can be established with such
localised safety properties which are weaker than the ones
we work with.

9 Topological abstraction

In the following we define a theory for the abstraction of
a scheme plan in such a way that safety of the abstraction
implies the safety of the concrete scheme plan. This is moti-
vated by [24] where we introduced an abstraction technique
which allows the transformation of complex CSP||B models
of scheme plans into less involved ones.

In this paper, as described in Sect. 3, the topology of the
railway network has been enriched with connectors to be
able to capture the dynamic direction of the points; therefore
the CSP||B models are also more detailed. This means that
we need to define an improved notion for the abstraction of
scheme plans which reflects the fact that the topology of the
railway network now contains connectors.

In this section the complex CSP||B models are formal
representations of concrete scheme plans SP, referred to as
SPC = CSP || B(SP), whereas the less involved CSP||B
models are referred to as SPA. More formally, consider two
scheme plans SPC and SPA. An abstraction (abst, absc) from
SPC to SPA consists of

– a total function

abst : AllTrackC → AllTrackA

satisfying

abst[TrackC] = TrackA,

abst(e) = efore ∈ ENTRYC ∪ EXITC, and

abst(nullTrack) = nullTrack;

and
– a partial function

absc : AllConnectorC → AllConnectorA

satisfying

absc(C0) = C0and

absc[ConnectorC] = ConnectorA

such that the following 18 properties are satisfied:

a.1: Entry A = Entry C (= Entry )

a.2: Exit A = Exit C (= Exit )

a.3: PointA = PointC (= Point)
a.4: ∀ p : Point . (homePtA(p) = abst(homePtC(p)))

a.5: if 〈t1, t2〉 is a path in SPC , then abst(t1) = abst(t2) or
〈abst(t1), abst(t2)〉 is a path in SPA

a.6: ∀ at : TrackA . abs−1[{at}] is connected.
a.7: if 〈at1, at2〉 is a path in SPA, then ∃ t1, t2 : TrackC .

t1 ∈ abs−1[{at1}], t2 ∈ abs−1[{at2}] and 〈t1, t2〉 is a
path in SPC .

a.8: ∀ p : Point . dynamicDirectionA(p)

= absc(dynamicDirectionC(p),
where absc(c1, c2) = (absc(c1), absc(c2))

a.9: SignalA = SignalC
a.10: ∀ s : Signal . (homeSigA(s) = abst(homeSigC(s)))

(= homeSig)
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Fig. 14 Topological abstraction: relating concrete to abstract events

a.11: if 〈t1, t2〉 is a path in SPC , and signalAtC(s) = t1 for
some signal s, then 〈abst(t1), abst(t2)〉 is a path in SPA

a.12: RouteA = RouteC (= Route)

a.13: ∀ r : Route .

(abs−1
t [clearTableA(r)] = clearTableC(r))

a.14: ∀ e : Entry .

(abs−1
t [entryTableA(e)] = entryTableC(e))

a.15: normalTableA = normalTableC (= normalTable)
a.16: reverseTableA = reverseTableC (= reverseTable)
a.17: releaseTableA =

{(abst(t), (r, p)) | (t, (r, p)) ∈ releaseTableC})
a.18: if 〈t1, t2〉 is a path in SPC , and

t2 ∈ dom(releaseTableC) then 〈abst(t1), abst(t2)〉 is a
path in SPA

Conditions a.1, a.2, a.3, a.9 and a.12 simply state that
the entry and exit tracks, points, signals and routes remain
unchanged in an abstraction. The only condition that makes
use of the absc function is a.8, which ensures that the direc-
tion of the points are maintained in an abstraction. All the
other conditions map tracks, points and signals through the
abstraction function abst . Conditions a.5, a.6 and a.7 are the
interesting ones because these are the ones that constrain how
tracks can collapse and how abstract and concrete paths map
to each other. Finally, conditions a.13–a.18 ensure that the
abstracted topology is correctly reflected in the control and
release tables.

Theorem 4 provides the justification that it is enough to
model check the abstract scheme plan SPA to ensure that the
required safety properties of the interlocking system hold,
and then infer that the same properties hold for the concrete
scheme plan SPC .

Theorem 4 If there is an abstraction from SPC to SPA, then:

1. if SPA is collision free, then SPC is collision free;
2. if SPA is derailment free, then SPC is derailment free; and
3. if SPA is run-through free, then SPC is run-through free.

Proof (sketch) The conditions a.1–a.18 on the abst and absc

functions are sufficient to ensure that concrete transitions can
be matched with abstract ones. In more detail, any move that
changes state—clearing a region; passing a signal; releas-
ing a lock—will be matched by an abstract move given in

Fig. 14 (or idle if the train remains on the same abstract
track), and conditions for granting and releasing routes are
matched.

The proof proceeds by setting up a linking relation
between CSP||B (SPC) and CSP||B (SPA) to show that con-
crete runs are matched by abstract runs. Two states are
linked if their signals, points and locks all match, and if
the abstract train positions match the concrete train posi-
tions under abst . Given a matching pair of states, a con-
crete event transition to a concrete state can be matched
by an abstract event transition to a matching abstract
state. The proof establishes this by a case analysis on the
events.

This means that any concrete run can be matched by an
abstract run. Hence, any concrete run containing collision,
derailment or run−through can be matched by an abstract
run containing the same event. It follows that if no abstact
run contains such events, then no concrete run can contain
them either. ��

If we consider SPC to be the station based on Langley as
shown in Fig. 2, there are no opportunities for abstraction to
reduce tracks which satisfy the above conditions. This is not
unusual in practice for large scheme plans, since there are
limited opportunities to perform abstraction due to the lack
of sequences of collapsible sequential tracks, i.e. ones that
do not contain signals and are not used in the release tables.
However, the benefit of our abstraction technique becomes
clear when we apply this technique after we apply the cov-
ering technique, introduced in Sect. 8. After applying the
covering technique the set of sub-scheme plans derived from
SPC will each contain many opportunities for abstraction.
This is because some points in a sub-scheme plan are only
considered in one direction, and so are treated as tracks.
This gives rise to sequences of tracks which can then be
collapsed. For example, Fig. 15 illustrates an example sub-
scheme plan for Langley, which focuses on track UC and
contains the opportunity to abstract tracks UE/EF and DRD/-
DRE. It shows that abst(DRD) = abst(DRE) = a DRD,
abst(UE) = abst(UF) = a UE, and maps t to a t for all
other track names t. absc is the corresponding mapping on
connectors. Figure 16 illustrates the abstraction for this sub-
scheme plan.
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Fig. 15 Langley concrete
sub-scheme plan SPC (resulting
from covering for track UC)

Fig. 16 Langley abstract
sub-scheme plan SPA

10 Experiments

In this section we outline various experimental results carried
out on our models. We use the CTL model checker provided
by ProB tool [32] (version 1.3.6-final)—on a standard
PC with a quad-core 3.2 GHz CPU and 8 GB memory—to
check the validity of the following CTL formula:

AG
(

not
(

e(collision) ∨ e(run− through)

∨ e(derailment)
) )

This formula is false if one of our ERROR events is enabled.
In the CTL variant of ProB, AG stands for “on all path it is
globally true that”, and e(a) stands for “event a is enabled”.

After summarising our proof method, we report on safety
verification results for two case studies: a simple station
which we have studied previously, and the complex Lang-
ley Station. Though we do not do so here, the production of
counter-example traces for a single, unsafe CSP||B model is
possible and is discussed in detail in [25].

10.1 Proof method using abstractions

Utilising our three abstraction principles, we apply the fol-
lowing proof method to analyse a scheme plan SP for safety:
for all units u ∈ Unit of a scheme plan SP,

1. we first construct the scheme plan SP{u} and encode it as
a model CSP ||B(SP{u});

2. we then apply a topological abstraction function abs to
obtain abs

(

CSP ||B(SP{u})
)

;

3. we then prove that abs
(

CSP ||B(SP{u})
)

is safe for two
trains using the ProB model checker.

In case that the proof in step 3 is successful for all u ∈ Unit,
the design SP is guaranteed to itself be safe.

This procedure is sound: by Theorem 4 on topological
abstraction we know that CSP || B(SP{u}) is safe for two
trains for all u ∈ Unit; by Corollary 1 and Theorem 3 con-
cerning finitisation we have that CSP ||B(SP{u}) is safe for
any numbers of trains for all u ∈ Unit; and by Corollary 3 on
covering we have that CSP ||B(SP) is safe for any number
of trains. As we argue that our CSP||B modelling is faithful,
we conclude that SP is safe.

10.2 Verifying a simple station example

In [24] we studied the simple station case study presented in
Fig. 17.

We reconsider this example here to text the effectiveness
of our abstraction techniques. However, unlike in [24], here
we consider overlaps (i.e. the ability of trains to overrun red
lights) which were not permitted in the earlier study due to
the assumed use of Automatic Train Protection (ATP).

Overall, an example of this small size and low complexity
can be directly verified without applying covering and topo-
logical abstraction. The successful verification using finiti-
sation to two trains but without covering and without topo-
logical abstraction takes 1m56s and produces a state space
containing 8394 states and 83279 transitions.
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Fig. 17 Station scheme plan

Fig. 18 Verifying the station
example via finitisation and
covering

We have also verified the station example using our proof
method as outlined in Sect. 10.1. Figure 18 gives an overview
of the state space required to verify each sub-scheme plan.
The table shows that the number of states and transitions
required for each of the 8 sub-plans is much smaller than
the number of states and transitions required for the whole
scheme plan. The total time to complete the verification of
all these sub-plans is 1m11s, i.e. 39 % faster than verifying
the full scheme plan. Furthermore, if we consider the total
number of states verified, we can see that in total our new
method inspects 7,181 states, which is fewer than the number
of states needed for the verification of the full scheme plan.

10.3 Verifying the Langley-based example

Direct verification (with finitisation) of the full scheme plan
for Langley is not possible due to the complexity of the
scheme plan, which consists of 49 tracks (including 4 entries
and 4 exists), 16 points, 12 signals and 16 routes. However,
the proof method from Sect. 10.1 enables its successful veri-
fication. Figure 19 summarises the number of states and tran-
sitions that are to be considered for the verification of each
of the 41 sub-scheme plans of the Langley example, though
without topological abstraction.

In Fig. 20 we categorise our verification in terms of the
numbers of states involved. Over half (51.2 %) of the 41
proofs are trivial and can be conducted within ∼10 s, whilst
15 of the 41 (36.6 %) take around ∼1 min to complete. The
remaining five (12.2 %) of the proofs require longer to com-

plete, with sub-plans for UI and UJ being particularly large
and taking up to 2 h each to complete. This is due to UI and
UJ being part of a large number of routes, which give rise to
large influence zones.

To consider the effect of topological abstraction, we
demonstrate its application to sub-plans of the Langley Sta-
tion example. Figure 21 gives an illustration of the reduction
in terms of sizes of state spaces gained from applying topo-
logical abstraction to these sub-scheme plans. Our results
shows that a reduction of up to 50 % is possible. In the exam-
ples considered, topological abstraction reduces the number
of tracks by about the same amount.

Overall, our experiments demonstrate that the proof
methodology from Sect. 10.1:

– reduces the verification time significantly for rail net-
works of small size and low complexity; and

– enables verification for rail networks of large size and
high complexity.

11 Related work

The railway interlocking problem has long been studied by
the Formal Methods community, and our work builds upon
prior approaches to the modelling and verification of rail-
ways. Prominent studies from the B community include
[3,20,33], whilst [28,35] are classical contributions from
process algebra and [10] uses techniques from algebraic spec-
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Fig. 19 Verification results via
finitisation and covering

Fig. 20 Categories of sub-plan verifications with respect to state space
sizes

Fig. 21 Improving verification with topological abstraction

ification. On a lower abstraction layer, [5,7,16,18] verify the
safety of interlocking programs with logical approaches.

11.1 Modelling comparison

Our modelling is most related to Winter’s approach in
CSP [37], Abrial’s modelling in Event-B [2] and Hax-
thausen’s modelling using RAISE and the SAL model
checker in [9]. Haxthausen also notes the importance of a
DSL in [9] and the techniques have been applied to the Sten-
strup Station real-world example. The author has success-
fully developed a toolset supporting the automated, formal
modelling and verification of product line of relay interlock-
ing systems based on the use of the SAL model checker.
The author shares similar verification goals of verifying the
interlocking tables.

In the following we briefly discuss the approaches of Win-
ter and Abrial’s respective approaches and the manner in
which we consider our approach to succeed in combining
the successful aspects of these whilst avoiding their perceived
deficiencies.

Winter [37] presents a generic, event-based railway model
in CSP as well as generic formulations of two safety prop-
erties: CollisionFreedom and NoMovingPoints. Overall, this
results in a generic architecture and a natural representation
of two safety properties. Traceability, however, is limited.
There are relations in the model which are derived from the
control table. For example, the driving rule “trains stop at a
red signal” is distributed over different parts of the model: it is
a consequence of the fact that (1) the event “move to the first
track protected by a signal” belongs to a specific synchronisa-
tion set and (2) a red signal does not offer this event. Purely
event-based modelling leads to such decentralised control.
Consequently, the model has no interlocking cycle.

Chapter 17 of the book by Abrial [2] gives an excel-
lent detailed description and analysis of the railway domain,
deriving a total of 39 different requirements. The modelling
approach is generic, even though no concrete model is proven
to be correct. Traceability in a tower of specifications can be
complex for various reasons. For instance, a requirement can
be the consequence of invariants from different levels. The
relation between intended properties and the model remains
an informal one. This is in contrast to other approaches
(including Winter’s and our own) which directly represent
the intended property in the formal world and then prove
that the modelled property is a mathematical consequence of
the formal model. Furthermore, the approach is monolithic:
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behaviour is not attached to different entities to which they
relate.

Winter et al. [38] allows a train to occupy two track seg-
ments, which is a concession to the assumption made else-
where (including in our previous studies) that a train can
only occupy one track segment. However, we noted in [15]
that even this concession is too restrictive to be realistic. The
novelty of this paper here is the discharging of the assump-
tion that only a very few trains may enter the network. This
assumption is traditionally used to keep the state space of the
analyses under control, with tools being stretched to allow the
possibility of ever more trains running through the network.
Using our approach, this assumption is no longer required,
at least for safety analysis.

11.2 Verification comparison

The focus of our paper has been on safety verification using
model checking in ProB. Model checking is becoming more
recognised as an industrial technique [6] and therefore it is
important to discuss it in the context of scalability. Ferrari
et al. [7] state that model checking large interlocking systems
is infeasible with current state-of-the-art model checkers, in
particular SPIN and NuSMV. However, Cimatti et al. [5]
have demonstrated considerable success using NuSMV on
industrial-scale problems. James et al. [16] also demonstrate
better results and the feasibility of the lower-level approach
involving program slicing. A detailed comparison with these
approaches is not appropriate since our approach is at a higher
level of abstraction. The justification for this higher level of
abstraction is that the industrial partners wish to have feed-
back on interlocking systems already during the design stage.

12 Conclusion

In this paper we have discussed an approach to safety verifi-
cations within railway interlocking which has been success-
fully deployed on live problems of substantial complexity
proposed for study by our industrial partners. Highlights of
our approach are: that it is usable by engineers and not simply
a theoretical study; that it makes substantial network analy-
ses tractable through effective abstractions; and that it brings
model checking down to the design level—at which engi-

neers work—rather than embedded deep inside a theoretical
model, thus allowing for a “push-button” approach to safety
verification. Two important lessons learnt through carrying
out this work are that language constructs need to be right
for the domain in question, and that domain analyses provide
the most powerful abstractions. In our strategy for covering,
we divide the scheme plan into sub-plans and generate a sub-
plan for each unit. This results in a large number of sub-plans
which may significantly overlap with each other. We have not
yet considered generating fewer but larger sub-plans, which
have a sequence of tracks as a core. This would be an inter-
esting avenue of further work.

There are three additional avenues of further work which
come immediately to mind. Firstly, extending the OnTrack
tool set [17] to implement the covering technique and the
improvements to the other abstraction techniques is obvi-
ously desirable to progress towards delivering a truly push-
button technology; the approach can then be readily applied
to further stations and topologies. Our current work involves
implementing the covering technique within the OnTrack
tool. Secondly, extending the framework and the abstrac-
tion techniques to permit bi-directional travel promises to be
straightforward, but remains to be established. Finally, there
is a clear desire to adapt the approach to emerging traffic
management protocols, specifically ETCS (European Train
Control System) [36]. The application of our approach to
ETCS Level 2 should be non-problematic, given it continues
to incorporate track boundaries, but going beyond Level 2
will require greater effort.
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Appendix A: The CSP||B model

In the following, we give the full CSP||B model of the station
example from Fig. 17. It consists of four B machines and one
CSP controller.

The Interlocking machine

123



706 P. James et al.

MACHINE Interlocking
SEES

Context, Topology, ControlTable, ReleaseTable
SETS

ANSWERS = {yes,no}
VARIABLES

pos, nextd, signalStatus, normalPoints, reversePoints, movedPoints, currentLocks
INVARIANT

pos : TRAIN +-> ALLTRACK &
nextd : ALLTRACK +-> ALLTRACK &
signalStatus : SIGNAL --> SIGNALSTATUS &
normalPoints <: POINT &
reversePoints <: POINT &
normalPoints /\ reversePoints = {} &
normalPoints \/ reversePoints = POINT &
movedPoints <: POINT &
currentLocks : ROUTE <-> POINT &
currentLocks <: lockTable

INITIALISATION
BEGIN
pos := {} ||
signalStatus := SIGNAL * {red} ||
normalPoints := POINT ||
reversePoints := {} ||
movedPoints := {} ||
currentLocks := {} ||
nextd := { (t1 |-> t2) | #(c1,c2,c3). ( t1 /= t2 &

(c1,c2) : direction[{t1}] & (c1,c2) : staticDirection \/ dynamicDirection[POINT*{normal}] &
(c2,c3) : direction[{t2}] & (c2,c3) : staticDirection \/ dynamicDirection[POINT*{normal}] ) }

END
OPERATIONS
collision =
SELECT #(t1,t2).(t1 : TRAIN & t2 : TRAIN & t1:dom(pos) & t2:dom(pos) & t1 /= t2 &
({pos(t1)} - (EXIT \/ ENTRY)) /\ ({pos(t2)} - (EXIT \/ ENTRY)) /= {})
THEN skip
END;
derailment =
SELECT ran(pos) /\ homePoint[movedPoints] /= {}
THEN skip
END;
runthrough =
SELECT nullTrack : ran(pos)
THEN skip
END;

bb <-- enter(t,entryPos) =
PRE

t : TRAIN & entryPos : ENTRY
THEN

IF (t /: dom(pos) & entryTable(entryPos) /\ ran(pos) = {})
THEN
bb := yes ||
movedPoints := {} ||
pos(t) := entryPos

ELSE
bb := no

END
END;

exit(t,exitPos) =
PRE t : TRAIN & pos(t) = exitPos & exitPos : EXIT
THEN

movedPoints := {} ||
pos := {t} <<| pos

END;
s <-- nextSignal(t) =
PRE t : TRAIN & t : dom(pos) & pos(t) : ran(homeSignal)
THEN

movedPoints := {} ||
s := signalStatus(homeSignal˜(pos(t)))

END;
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bb <-- request(route) =
PRE route : ROUTE THEN
LET occTracks,emptyTracks BE occTracks = ran(pos) & emptyTracks = TRACK - occTracks IN
/* are the tracks for a route empty */
IF ((signalStatus(signal(route)) = red) & (clearTable(route) <: emptyTracks ))
THEN

LET unlockedPoints BE unlockedPoints = POINT - ran(currentLocks) IN
/* all points in right position or unlocked */
IF ((normalTable[{route}] <: normalPoints \/ unlockedPoints ) &

(reverseTable[{route}] <: reversePoints \/ unlockedPoints))
THEN
LET np, rp BE
np = (normalPoints \/ normalTable[{route}]) - reverseTable[{route}] &
rp = (reversePoints \/ reverseTable[{route}]) - normalTable[{route}]

IN
/* move points on the route that need to be moved */
movedPoints := (normalPoints - np) \/ (reversePoints - rp) ||
normalPoints := np ||
reversePoints := rp ||
/* for each point p of route, lock p */
currentLocks := currentLocks\/({route} <| lockTable) ||
/* set signal of route to greeen */
signalStatus(signal(route)) := green||
/* grant the request */
bb := yes ||
nextd := { (t1 |-> t2) | #(c1,c2,c3). ( t1 /= t2 &

(c1,c2) : direction[{t1}] & (c1,c2) : staticDirection \/
dynamicDirection[np*{normal} \/ rp*{reverse}] &

(c2,c3) : direction[{t2}] & (c2,c3) : staticDirection \/
dynamicDirection[np*{normal} \/ rp*{reverse}] ) }

END /* end let */
ELSE
/* refuse request */
movedPoints := {} ||
bb:= no

END /* end if */
END /* end let */

ELSE
/* refuse request */
movedPoints := {} ||
bb:= no

END /* end if */
END /* let */

END; /* end pre */

newp <-- move(t,currp) =
PRE t : TRAIN & t : dom(pos) & currp = pos(t) THEN
movedPoints := {} ||
IF (pos(t) /: dom(nextd)) THEN

pos(t) := nullTrack ||
newp := nullTrack

ELSE
LET track BE track = nextd(pos(t)) IN
pos(t) := track ||
newp := track ||
IF (pos(t) : ran(homeSignal)) THEN

signalStatus(homeSignal˜(pos(t))) := red
END ||
currentLocks := currentLocks - releaseTable[{track}]

END
END

END;
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bb <-- release(route) =
PRE route : ROUTE THEN
movedPoints := {} ||
LET emptyTracks BE emptyTracks = TRACK - ran(pos) IN
IF

/* the signal of the route is green */
(signalStatus(signal(route)) = green) &
/* points locked for the route */
currentLocks[{route}] = lockTable[{route}] &
/* no train is in the track preceding the route (i.e. nothing close enough to
go through the red light ) */

homeSignal(signal(route)) : emptyTracks
THEN

signalStatus(signal(route)) := red ||
currentLocks := {route} <<| currentLocks ||
bb := yes

ELSE
bb := no

END
END /* let */

END
END

The Context machine

MACHINE Context
SETS

TRACKSTATUS = {occ,empty};
ASPECT = {red,green};
ALLTRACK = {AA, AB, AC, AD, AE, AF, BC, BD, Entry, Exit, nullTrack};
ALLCONNECTOR = { C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12 };
SIGNAL = {S10, S12, S112};
TRAIN = {albert,bertie};
POINT = {P101,P102};
POINTPOSITION = {normal,reverse};
POINTSTATUS = {locked, unlocked};
ROUTE = {R10A, R10B, R12, R112 }

CONSTANTS
SIGNALSTATUS, CONNECTOR, TRACK, ENTRY, EXIT

PROPERTIES
SIGNALSTATUS = ASPECT &
CONNECTOR = ALLCONNECTOR - {C0} &
ENTRY = {Entry} &
EXIT = {Exit} &
TRACK = ALLTRACK - {nullTrack}

END
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The Topology machine

MACHINE Topology
SEES Context
CONSTANTS

signal, homeSignal, homePoint,
direction, staticDirection, dynamicDirection

PROPERTIES
signal : ROUTE --> SIGNAL &
signal = { (R10A |-> S10), (R10B |-> S10),(R12 |-> S12), (R112 |-> S112) } &
homeSignal : SIGNAL >-> TRACK &
homeSignal = { S10 |-> Entry, S12 |-> AC, S112 |-> BC } &
homePoint : POINT --> TRACK &
homePoint = { (P101 |-> AB), (P102 |-> AE) } &
direction : TRACK <-> CONNECTOR * CONNECTOR &
direction = { Entry |-> (C1,C2),

AA |-> (C2,C3), AB |-> (C3,C4), AB |-> (C3,C10), AC |-> (C4,C5),
AD |-> (C5,C6), AE |-> (C6,C7), AE |-> (C12,C7), AF |-> (C7,C8),
Exit |-> (C8,C9), BC |-> (C10,C11), BD |-> (C11,C12) } &

staticDirection : CONNECTOR <-> CONNECTOR &
staticDirection = {(C1,C2),(C2,C3),(C4,C5),(C5,C6),(C7,C8),(C8,C9),(C10,C11),(C11,C12)} &
dynamicDirection : POINT * POINTPOSITION --> CONNECTOR * CONNECTOR &
dynamicDirection = { (P101,normal) |-> (C3,C4),(P101,reverse) |-> (C3,C10),

(P102,normal) |-> (C6,C7), (P102,reverse) |-> (C12,C7)} &
ran(direction) = staticDirection \/ ran(dynamicDirection) &
staticDirection /\ ran(dynamicDirection) = {}

END

The Control Table machine

MACHINE ControlTable
SEES Context
CONSTANTS
entryTable, normalTable, reverseTable, clearTable, lockTable

PROPERTIES
entryTable: ENTRY --> POW(TRACK) &
normalTable : ROUTE <-> POINT &
reverseTable : ROUTE <-> POINT &
clearTable : ROUTE --> POW(TRACK) &
lockTable : ROUTE <-> POINT &
entryTable = { Entry |-> {Entry,AA} } &
normalTable = { R10A |-> P101, R12 |-> P102 } &
reverseTable = { R10B |-> P101, R112 |-> P102 } &
clearTable = { R10A |-> {AA,AB,AC,AD}, R10B |-> {AA,AB,BC,BD},

R12 |-> {AD,AE,AF}, R112 |-> {BD,AE,AF} } &
lockTable = { R10A |-> P101, R12 |-> P102, R10B |-> P101, R112 |-> P102 } &
lockTable = normalTable \/ reverseTable

END

The Release Table machine

MACHINE ReleaseTable
SEES Context
CONSTANTS

releaseTable
PROPERTIES

releaseTable : TRACK <-> (ROUTE*POINT) &
releaseTable = { AC |-> (R10A,P101),BC |-> (R10B,P101),AF |-> (R12, P102),AF |-> (R112,P102) }

END
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The CSP controller

datatype TRAIN = albert | bertie
datatype SIGNAL = red | green
datatype POS = AA | AB | AC | AD | AE | AF | BC | BD |

Entry | Exit | nullTrack
ALLTRACK = POS
TRACK = diff(ALLTRACK,{nullTrack})
ENTRY = {Entry}
EXIT = {Exit}
SIGNALHOMES = {Entry, BC, AC }
datatype ROUTE = R10A | R10B | R12 | R112
datatype ANSWERS = yes | no

channel enter: TRAIN.ENTRY.ANSWERS
channel exit: TRAIN.EXIT
channel nextSignal : TRAIN.SIGNAL
channel move : TRAIN.ALLTRACK.ALLTRACK
channel request : ROUTE.ANSWERS
channel release : ROUTE.ANSWERS
RW_CTRL =
([] r : ROUTE @ request!r?ans -> RW_CTRL)
[]
([] r : ROUTE @ release!r?ans -> RW_CTRL)

TRAIN_OFF(t) =
[] entryPos : ENTRY @
enter!t!entryPos?ans ->
(if (ans == yes) then

TRAIN_CTRL(t,entryPos)
else
TRAIN_OFF(t))

TRAIN_CTRL(t,pos) =
(member(pos,EXIT) & exit.t.pos -> STOP)
[]
(not(member(pos,EXIT)) and
not(member(pos,SIGNALHOMES)) &
move.t.pos?newp -> TRAIN_CTRL(t,newp)

)
[]
(not(member(pos,EXIT)) and
member(pos,SIGNALHOMES) &
nextSignal!t?aspect ->
(if (aspect==green) then

move.t.pos?newp -> TRAIN_CTRL(t,newp)
else

((move.t.pos?newp -> STOP) |˜| TRAIN_CTRL(t,pos))
)

)
ALL_TRAINS = ||| t : TRAIN @ TRAIN_OFF(t)
channel collision, runthrough, derailment
ERR = (collision -> ERR) [] (runthrough -> ERR) [] (derailment -> ERR)
CTRL = RW_CTRL ||| ALL_TRAINS ||| ERR
MAIN = CTRL
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