Verification of solid state interlocking programs

Phillip James®, Andy Lawrence', Faron Moller!, Markus Roggenbach', Monika
Seisenberger', Anton Setzer!, Karim Kanso?, and Simon Chadwick?

! Swansea Railway Verification Group, Swansea University, Wales, UK
2 (Critical Software Technologies, Southampton, England, UK
3 Invensys Rail, Chippenham, England, UK

Abstract. We report on the inclusion of a formal method into an in-
dustrial design process. Concretely, we suggest carrying out a verification
step in railway interlocking design between programming the interlock-
ing and testing this program. Safety still relies on testing, but the burden
of guaranteeing completeness and correctness of the validation is in this
way greatly reduced. We present a complete methodology for carrying
out this verification step in the case of ladder logic programs and give re-
sults for real world railway interlockings. As this verification step reduces
costs for testing, Invensys Rail is working to include such a verification
step into their design process of solid state interlockings.

1 Introduction

Solid state interlockings represent one of many safety measures implemented in
railways. In Vincenti’s terminology [27], interlockings are normal designs: railway
engineers have a clear understanding of their workings and customary features,
and it is standard practice to design them and to bring them into operation.

The formal method we propose is a verification step between programming
the interlocking using ladder logic [11] and testing of this program. The method
we suggest is first to automatically translate the program as well as its desired
properties and then to apply standard model checking approaches and tools to
the resulting model checking problem.

Our work has been inspired by [8,7]. [8] gives a detailed description of
model checking railway interlockings and highlights the use of program slicing.
[7] presents an approach to translate ladder logic programs into propositional
logic and formulates model checking for sliced ladder logic programs. Alterna-
tive approaches include [28] who apply timed automata and UPPAAL or [9]
who present a development framework for ladder logic, including verification by
port-level simulation. Ladder logic programs for programable logic controllers
in general have been verified using the symbolic model checker SMV [23]. An-
other type of interlocking program developed in so called “Safety Logic” has
been verified using the SPIN model checker [3]. In [10], Haxthausen extracts a
transition system (a SAL model) from circuit diagrams which are reminiscent of
ladder logic programs. [15] verifies interlockings by interactive theorem proving,
reducing the gap between verification of safety and safety in the real world.

This paper’s contribution is, besides giving a precise formalisation of the
translation from ladder logic into a model checking problem, to put known ver-
ification approaches into the context of a concrete engineering problem and, by
providing a prototypical implementation, demonstrate that they work.

We first define interlockings and describe their design exemplified by the
GRIP process and the realisation of GRIP’s Detailed Design phase at Invensys
Rail. We then detail our formal method, i.e., the verification step, and com-
pile different technologies upon which the verification can be based. Finally, we
present comparative results in terms of an industrial case study. This paper
summarises results published in [15-18, 20].

2 Designing Solid State Interlockings

In railway systems, solid state interlockings provide a safety layer between the
controller and the track. In order to move a train, the controller issues a request
to set a route. The interlocking uses rules and track information to determine
whether it is safe to permit this request: if so, the interlocking will change the
state of the track (move points, set signals, etc.) and inform the controller that
the request was granted; otherwise the interlocking will not change the track
state. In this sense, an interlocking is like a Programmable Logic Controller
(PLC). The standard IEC 61131 [11] identifies programming languages for such
controllers, including the visual language ladder logic discussed below.

Interlockings applications are developed according to processes prescribed by
Railway Authorities, such as Network Rail’s Governance for Railway Investment
Projects (GRIP) process. The first four GRIP phases define the track plan and
routes of the railway to be constructed, while phase five — the detailed design
— is contracted to a signalling company such as Invensys which chooses appro-
priate track equipment, adds control tables to the track plan, and implements
the solid state interlocking. It is for part of this phase, namely for the correct
implementation of a control table in a solid state interlocking, that our paper
offers support in terms of a formal method.

Signalling handbooks (e.g. [21]) describe how to design control tables for
the routes of a track plan. Technical data sheets provide information of how
to control the selected hardware such as points, signals and track circuits. It is
a complex programming task to implement the control tables for the selected
hardware elements. For a larger railway station, the resulting program can in-
volve thousands of tightly coupled variables, so thorough testing for safety is
a must. To this end, programs are run on a rig which simulates the physical
railway, and it can take any number of iterations of testing and debugging for
a program to pass all prescribed tests. This testing cycle is cost intensive, as it
is hardly automated due to its interactive nature and concerns about the safety
integrity of any automated testing environment: the tester has to run the pro-
gram through various scenarios developing over time. Furthermore, debugging
is time consuming as there is little support for producing counter examples.

It is at this point that the formal method described below is able to reduce
costs in the design process. Rather than testing an interlocking program, we
automatically transform the program and the safety property that the test shall
establish into a model checking problem. Tool support then allows to automat-
ically check if the property is fulfilled. In case it is not, a counter example is
produced, possibly in the form of a trace of controller requests and train move-
ments. This allows the programmer to obtain intelligible feedback. This process
is fast and far less involved than testing the program. For these reasons, based
on our research, Invensys Rail is working to include such a verification step into
their design process of solid state interlockings.

3 From Ladder Logic to Model Checking

We first introduce the programming language ladder logic, show how ladder logic
programs can be represented in propositional logic, and give them a semantics
in terms of transition systems. We then discuss how typical safety properties
from the railway domain expressed in first order logic can be specialised to
propositional logic. These two steps result in a model checking problem: is the
specialisation of a safety property satisfied w.r.t. the labelled transition system
gained from the ladder logic program? We discuss how to apply standard model
checking approaches to this question and address the problem of false positives.

3.1 Ladder Logic

Ladder logic gets its name from its graphical “ladder”-like form (see Fig. 1) remi-
niscent of relay circuits. Each rung of the ladder computes the current value of an
output. A ladder logic program is executed top-to-bottom, and an interlocking
executes such a program indefinitely.

A ladder logic rung consists of the following entities. Coils represent boolean
values that are stored for later use as output variables from the program. A
coil is always the right most entity of the rung and its value is computed by
executing the rung from left to right. Contacts are the boolean inputs of a
rung, with open and closed contacts representing the values of un-negated and
negated variables, respectively. The value of a coil is calculated when a rung
fires, making use of the current set of inputs — input variables, previous output
variables, and output variables already computed for this cycle — following the
given connections. A horizontal connection between contacts represents logical
conjunction and a vertical connection represents logical disjunction. For example:

X
W
c v X Y
O - e
(a) A coil (b) Disjunction with (¢) Conjunction with an
closed contacts open and a closed contact

As a running example we model a Pelican crossing, consisting of: two buttons
at each side of a road, allowing pedestrians to make a request to cross; and four
sets of lights (2 pedestrian lights, pla and plb, and 2 traffic lights, tla and tlb)
controlling the flow of pedestrians and traffic. This is modelled by a boolean
input variable pressed and 8 variables plar, plag, plbr, plbg, tlar, tlag, tlbr, tlbg,
modelling the aspect of the light, v’ for 'red’, ’g’ for 'green’. We also have two
internal variables: req represents whether one of the pedestrian buttons has been
pressed in a previous iteration of the program and whether there is already a
request to cross; and crossing models the fact that a pedestrian is allowed to
cross the road. Fig. 1 presents a ladder logic program for such a Pelican crossing.

The execution model for a ladder logic program is an infinite repetition of the

req crossing crossing
1 E 1 /E c

1 € 1/E D

pressed req req

1 E 1 /E c

1 € 1/E D

pressed crossing tlag
1/E 1 /E I
1/ 1/E D)
req

pressed crossing tlbg
1 /E T/F e

1/ C 1/ C L
req

crossing tlar

crossing tlbr

crossing plag

crossing plbg

crossing plar

crossing plbr

Fig. 1. The ladder logic program for the pelican crossing

sense-think-act cycle common in the design of embedded systems. Sense: all
inputs are read; think: the program is executed; act: the outputs are all written.
It thus makes sense to speak about consecutive execution cycles; and we discuss
program execution for the current cycle, depending on the values of the input
and the internal variables at the end of the previous cycle. We explain our use
of ladder logic by considering the example program in Fig. 1.

— If the state variable “crossing” becomes true in Rung 1, then as a conse-
quence, at the end of the cycle the pedestrian lights will be green and the
traffic lights will be red (by Rungs 3-10).

— For “crossing” to become true, a request “req” to cross must have been made
and in the previous cycle pedestrians could not cross (see Rung 1).

— The state variable “req” is true if and only if at (the beginning of) the
previous cycle the button was pressed and at (the end of) the previous cycle
the pedestrian lights were red i.e. “req” was previously false (see Rung 2)

— Rungs 5 and 6 control the setting of the red light for the traffic depending
on on the state variable “crossing”. Rungs 6-9 control the pedestrian lights
depending on the state variable “crossing”.

— Rungs 3 and 4 deliberately use a complicated encoding in order to demon-
strate later the difference between model checking approaches. However, they
still encode the correct behaviour: namely, setting the green light for traffic
exclusively to setting the green light for pedestrians.

3.2 From Ladder Logic to Propositional Logic

From an abstract perspective, ladder logic diagrams represent propositional for-
mulae. However, the process of obtaining these requires special care. In [14] we
detail of how to use the Tseitin Transformation [26] in order to prevent a blow-
up in formula size regarding nested disjunctions. This avoids bad performance
when translating formulae into CNF, which is the usual input format of SAT
solvers, the verification technology we intend to use.

a f
R | SR |/ S EME

Lo e .]”
/ fl €1

c Vi

3 ECI

Fig. 2. Tracing back from coil f: Without auxiliary variables, the nested disjunction
results in the large formula f' < (=b A (aV =f' Ve)) V(e (aV —f' Ve)).

The Tseitin Transformation traverses the formula from left to right, build-
ing up sub-formulae, each of which consisting of a conjunction or disjunction.
The efficient use of sub-formulae requires the introduction of auxiliary variables.
Fig. 2 shows an example and locations where variables are introduced. Here, a
new variable is introduced for each step in the computation: After every contact
x a new variable x; is introduced (where ¢ is fresh for z), and for each vertical
connection (disjunction) a new variable V; is introduced (where j is fresh). The
rung is then broken at each of the intermediate variables, resulting in a simpli-
fied ladder. Each rung in the simplified ladder consists of only conjunction or

disjunction and at most one negation. By following the above procedure, applied
to the ladder in Fig. 2, the below assignments and formulae are obtained:

a1 =a (a1 ¢ a)
Jii=~f AN (fienf)
c1i=c AN(ciec)
Vii=a1V fiVer A (Vi alVfive)
b1 :== V1 A b A (b < ViA-Db)
e1:=ViAe A (el Vine)
Vo :i=b1 Ve A (Vg bl Vel)
f=V2 A ([Vs)
(a) Assignments of Fig. 2. (b) Translation of Fig. 2.

The ladder logic of the Pelican logic Fig. 1 translates (for readability without
the optimisation) into the conjunction of these formulae:
crossing’ <> req A — crossing,
req’ < pressed N\ - req,
tlag’ < (— pressed V req’) A — crossing’,

tlbg' <> (- pressed V req') N — crossing,

tlar’ < crossing’, tlbr’ < crossing’,
plag’ + crossing’, plbg’ < crossing’,
plar’ <+ = crossing’, plbr’ <> = crossing’

3.3 Ladder Logic Formulz and their Semantics

A ladder logic program is constructed in terms of disjoint finite sets I and C' of
input and output variables, where internal variables are subsumed in C. In our
example in Fig. 1, we have I = {pressed} and C = {crossing, req, tlag, tlbg, tlar,
tlbr, plag, plbg, plar, plbr}. We define C’ = {¢’ | ¢ € C} to be a set of new vari-
ables (intended to denote the output variables computed in the current cycle).
In addition, we need a function unprime : C" — C, unprime(c’) = c.

Definition 1 (Ladder Logic Formulae) A ladder logic formula ¢ is a propo-
sitional formula of the form

P = () Ao) A A ()
such that the following holds for all 1,5 € {1,...,n}:

- el

—i#Fj—c £ and
— Vars(yp;) € I U {d,....ci_1} U {ciy...,cen}-
Remark 1 Note that the output variable ¢; of each rung v;, may depend on

{ci,...,cn} from the previous cycle, but not on c; with j <14, due to the imper-
ative nature of the ladder logic implementation. Those values are overridden.

Remark 2 In the formulae extracted from a ladder logic program equivalences
() <> 1) A--- can be replaced by (¢} = 1) A---. Both formulae are equivalent.

Definition 2 (Semantics of Ladder Logic Formulae) Let {0,1} represent
the set of boolean values and let

Valy = {pr|pr: I —{0,1}} = {0,1}/
Vale = {pc | pe : C — {0,1}} = {0,1}¢

be the sets of valuations for input and output variables. The semantics of a ladder
logic formula v is a function that takes the two current valuations and returns
a new valuation for output variables:

['(/)] : Val; x Valg — Valg
W1, ne) = ne

where

!

pe(ei) = [Wil(pr, (16) 1er,....enys (o © unprime) jre o y)
pie(c) = po(e) if c ¢ {er, ... en}

and [¥;](-,+,-) denotes the usual value of a formula under a valuation.

3.4 Labelled Transition Systems
We turn this into a transition system representing the ladder logic program.

Definition 3 (Labelled Transition System, reachability) A Labelled Tran-
sition System (LTS) M is a four tuple (S,T, R, Sy) where

— S is a finite set of states;

— T is a finite set of transition labels;

— RC S XT xS is a labelled transition relation; and

— So € S is the set of initial states.

We write s = s for (s,t,s") € R. A state s is called reachable if

to tl tn71
So —> 81—~ ... —> S = S,

for some states sg,...,s, € S, and labels tg,...,t,_1 €T where sg € Sy.

Definition 4 (Ladder Logic Labelled Transition System) We define the
labelled transition system LTS(v) for a ladder logic formula ¢ to be the four
tuple (Valg, Valy, —, Valy) where

— po = pe i Wl pe) = pe
— Valy = {pc | po inital valuation}

Remark 3 The standard initial valuation in the railway domain sets all red
lights to 1, and all other variables to 0, i.e. this results in exactly one initial
state. A variant proceeds as follows: First, all output variables are set to 0 and
then all possible transitions are performed. Valg is then defined as the set of
states obtained after this first transition. In the Pelican crossing example (see
Fig. 3 below) this would lead to two initial states rather than one. In both cases,
a formula Init characterises Valy.

3.5 Producing Verification Conditions

In order to guarantee safety, companies such as Invensys ensure through testing
that interlockings fulfil certain properties. We formulate them as logical formulae,
and call the result safety conditions. These conditions are the main example
of werification conditions, which are formulae, for which we check using our
tools whether they hold in an interlocking system. In our setting verification
conditions are first-order formulae, with variables ranging over entities such as
points, signals, routes, track segments, while referring to predicates. An example
of a safety condition is the formula

Vrt, rt’ € Route.Vts € Segment.
(rt # rt’ A part_of(ts,rt) A part_of(ts, rt’))
— = (routeset(rt) A routeset(rt’))

expressing the property: for all pairs of routes that share a track segment, at
most one of them can be set to proceed.

Note there are two kinds of predicates: State and Topology. State predicates
express the state of entities at a given time; e.g., routeset(rt26) expresses that
route rt26 has been set. These predicates will unfold into variables in the lad-
der logic program, so in the previous example the predicate would—depending
on the actual naming scheme—unfold to the variable rt267mu. Topology pred-
icates express meta information relating to the topology of the railway yard.
E.g. part_of(ts54,rt26) expresses that the track segment ¢s54 is part of route
rt26. These predicates unfold to true or false, depending on whether the prop-
erty holds; thus, the previous example unfolds to true when ts54 is actually
part of 126, otherwise false.

Some topology predicates are atomic and stated explicitly as true or false for
given arguments. Other predicates can be computed in terms of these atomic
predicates. E.g., signal ms! is a main signal guarding access to route rt, if there
exists track segments ts1 and ¢s2 such that ¢s! is before route ¢, ts1 is connected

with ts2, ts2 is part of the route rt, and ms! is located directly between tsi1
and ¢s2. This can be expressed as follows:

route_main signal(ms1, rt) <+ Jitsl,ts2 € Segment.
before(ts1, rt) A connected(ts!,ts2) A part_of(ts2,rt)
A infrontof(ts1, ms1) A inrearof(ts2, ms1)

In [14, 16] Kanso introduces a translation of such formulae to propositional
formulae which can then be verified using either SAT solving or model checking.
This approach takes the following steps:

1. We first express the topology using a Prolog program that determines the
truth of the topology predicates. The program consists of clauses such as
— mainsignal(ms!) — signifying that ms! is a main signal, and
— infrontof (¢s0a, ms1) — signifying that signal ms?! is in front of track seg-
ment tsOa.
The above predicate route_main_signal(msI, rt) is defined in Prolog as:
route_main signal(ms1, rt) :—

before(ts, rt), connected(ts, tss),

part_of (tss, rt), infrontof(ts, ms1), inrearof(tss, ms1).

2. We then translate the formula into prenex form — i.e., a formula consisting of
a block of quantifiers followed by a quantifier free formula — using standard
techniques from logic.

3. Finally, we replace each occurrence of V€ A.o(x) by ¢(ai) A---Ap(a,) and
each occurrence of Jz€A.p(z) by w(a1)V---Ve(a,), where ay, ..., a, are the
elements of set A in the topology. ¢ is now instantiated to closed instances.
Therefore the topological predicates evaluate to truth values that can then
easily be omitted from the formula. Safety formulae can usually be translated
into universally quantified formulae in prenex normal; the universally quan-
tified formula is replaced by conjunctions, where most conjuncts reduce to
false, since topology predicates such as connected(ts1, ts2) are false for most
choices of arguments. Finally state predicates are replaced by the Boolean
variables of the ladder logic. In the case of safety conditions we obtain a
conjunction of instantiations of . Since safety conditions usually become
conjunctions, the validity of the conjuncts can be checked separately. This
allows to identify problems relating specific objects of the railway yard.

A typical verification condition for our Pelican crossing example would for in-
stance ensure that the traffic lights and the pedestrian lights are not green at
the same time:

© = (tlag A tlbg A —plag A —plbg) Vv (—tlag A\ —tlbg A plag A plbg)

3.6 The Model Checking Problem

We want to speak about the properties of the system that ensure safety — the
so-called safety conditions — and then define what it means for a safety condition

to hold in a labelled transition system. The following definition is motivated by
the fact that safety conditions (tend to) describe properties which hold for two
consecutive cycles of the ladder logic program.

Definition 5 (Safety Condition for a Ladder Logic Program) Given a
ladder logic formula ¥ over the variables in I UC, a verification condition is
a propositional formula formed from the variables in I UCUC".

Having defined the model of our system and the type of properties we want
to speak about in that model, we must answer the following question: Given a
model of our system and a safety condition, how do we check that the safety
condition holds in that model. This motivates the following definition.

Definition 6 (Verification Problem for Ladder Logic Programs) We de-
fine (and denote) the verification problem for a ladder logic formula v for a
verification condition ¢ as follows:

LTS(¥) = ¢ iff for all reachable transitions of the LTS — that is, triples
pe, B, fe such that pe 25 plh, and pe is reachable
in LTS(v) — we have [@](1c, pr, pe) = 1.

Note that in most cases, as in our Pelican crossing, the verification condition
¢ only consists of variables in C, thus, the model checking problem simplifies
to considering individual states, i.e. whether [¢](uc) = 1 at all times. Fig. 3
shows the labelled transition system for the Pelican crossing example. We have
included one unreachable state in which both required and crossing are true.

Fig. 3. Pelican crossing transition system

3.7 Model Checking Approaches

Target technology for the first three algorithms is SAT-solving; in the algorithms,
execution terminates after a “return” statement has been performed.

Bounded Model Checking (BMC) BMC, see, e.g., [5], restricts the depth
of the search space. Let the formulae ¥ n > 1, be the unrolled transition
relations which encode n steps with v from an initial state of the transition
system. The following algorithm explores the transition system to a depth of up
to K steps (we assume that ¢ uses the variables concerning the last transition):

if =(Init — ¢) is satisfiable, return error state
n<1
while n < K do
if =(Init — ¢) is satisfiable, return error trace
n—n+1
return “K-Safe”

As BMC produces a counter example trace if the verification fails, it is espe-
cially interesting for debugging purposes.

Inductive Verification (IV) IV checks if an over approximation of the reach-
able state space is safe. In the following algorithm we assume that ¢ uses the
variables concerning the current transition and ¢’ those concerning the last tran-
sition:

if =(Init — ¢') is satisfiable, return error state
if =(¥ A ¢ — ¢') is satisfiable, return pair of error states
return “Safe”

The over approximation happens in the second line of the algorithm: here
one considers all safe transitions rather than the reachable ones. This idea makes
IV a very efficient approach involving at most two calls to a SAT solver [14, 16].

Temporal Induction (TI) TI, see, e.g., [6], combines BMC and IV to allow
for both complete verification and counter example production. For n > 0, let
1, be the unrolled transition relation encoding n steps with 1; let LF,, be a
formula encoding that all transitions of a sequence of n transitions are pairwise
different; and safe, be a formula encoding that all these transitions fulfil the
verification condition. Define

Base, = Init A, — ¢, and
Step,, = Y41 ALFp11/safe, — ¢, where ¢ uses the variables concerning
the last transition.

We then have the following procedure.

n<+0

while true do
if ~Base,, is satisfiable, return error trace
if - Step,, is unsatisfiable, return “Safe”
n+<n+1

Stalmarck’s Algorithm This algorithm has been developed and patented by
Stalmarck [24]. It generally works well on industrial problems as — despite often
being of a considerable size — they typically have a simple underlying structure.

Optimisation via Slicing Usually, the verification condition ¢ does not use
all variables of the ladder logic formula . This opens up the possibility to slice
1 with respect to ¢, i.e., to compute a formula ¢4 with ¢ = ¢ < ¥y = ¢
where 1) involves fewer variables and rungs than . [8, 7] present an algorithm
to compute 14, [12,13] give a correctness proof. Here is the sliced ladder logic
program of the Pelican crossing example for the condition (tlag Vtlar) A= (tlag A
tlar) A (tlbg V tlbr) A —(tlbg A tlbr):

crossing’ <+ req A —crossing,
req < pressed A —req,
tlag’ + (= pressed' V req') A — crossing
tibg' < (= pressed’ V req') A — crossing’
tlar’ < crossing’,

tlbr’ <+ crossing’

Such slicing can be applied as a pre-processing step for all discussed approaches.

3.8 Excluding False Positives by Invariants

When verifying interlockings, often false positives are obtained. When discussing
such false positives arising from the models with railway experts, they often
state that in the physical system these situations do not occur because the
specific value combination of the false positive is impossible, i.e., the false positive
violates a system invariant. In [14] we identify two types of invariants.

Physical invariants are due to the fact that certain combinations of input
variables are physically impossible. A typical example of this is a three way
switch, modelled by 3 variables where each variable ¢ indicates whether the
switch is in position ¢ or not. Physically it is impossible that such switch is in
two positions simultaneously. This insight can be added to the system model as
an invariant. However, in the real system it might happen that wet leaves fall on
the three way switch and connect two of its contacts. This now puts the physical
controller into a state that in the model was excluded by the physical invariant.
Here, one has to decide if the system design and therefore its verification shall
cater for such situations or not, i.e., physical invariants need to be carefully
considered and validated by domain experts.

Mathematical invariants. In the case of IV, unreachable states may hinder
verification through causing false positives. In this case one can identify invari-
ants that hold in all reachable states. An example of such an invariant would be
the equivalence tlar <+ tlbr, which holds for the program given in Fig. 1.

3.9 Graphical Representation

In order to investigate counter examples a graphical representation of the error
states was given. For our prototype, Kanso [14, 16] develops a latex document,
which contains a scheme plan with signals, sets of points and routes, together
with tables listing the state of all variables in question. The state of signals (red
or green) and points and of all tables listed is determined by macros. It is now
easy to compute from an error state a document setting these macros to the
values in this state, and therefore present an easy to view document.

4 Technology & Case Studies

4.1 SAT solving with open software

An initial—successful—feasibility study was conducted using the open-source
OKLibrary as underlying SAT solving framework to automate IV in order to
establish safety properties. To this end, we used the Dimacs format as a target
language. Note that this requires a representation in CNF.

Extending this implementation, we produced a framework of automatic trans-
lations of the formulae ¢, written in Haskell (about 8000 lines of code), and ¢,
written in Java (about 1000 lines of code), into the formulae required for the
algorithms BMC, IV, and TI. As target format we chose TPTP [25], which is the
input language of the Paradox tool [4]. Internally, the open source tool Paradox
is based on the SAT solver Minisat [22], which is open source as well. Using
Paradox has the advantage that the tool takes care of the translation into Di-
macs format. The framework also includes a Haskell implementation of slicing
(about 500 lines of code).

Using this framework, experiments on our Pelican crossing example with the
above verification condition showed: with BMC the program is K safe for all
K > 0 we tried; with IV, we obtain a pair of error states; TI gives the result
“Safe”. This example demonstrates that though IV is sound, it is not complete.

4.2 The SCADE Suite as an Industrial Tool

For comparison, we applied a tool widely used in industry, where however no
control over the method applied is available. In SCADE (Safety Critical Appli-
cations Development Environment) [1] programs are verified using the SCADE
language and Prover Technology based on Stalmarck’s algorithm. The program
to translate ladder logic programs into SCADE is based on the framework de-
scribed above, it has a length of approximately 8000 lines of Haskell code [19].

The SCADE language is based on the synchronous dataflow language Lustre
[2]. The flows which constitute a Lustre program are infinite sequences of values
which describe how a variable changes over time. Flows are combined together to
form nodes which can be seen as the Lustre equivalent of a function or procedure.
There are two main temporal operations which can be applied to flows:

— The unary operator pre allows one to consider the previous value of a flow.
— The binary operator —> allows one to express an initial value using the first
operand and all subsequent values are computed using the second operand.

The following is the result of the automatic translation of the pelican crossing
ladder logic to SCADE.

node PelicanLadderLogicl(pressed: bool)
returns (req, crossing, tlag, tlar, tlbg, tlbr, plag,
plar, plbg, plbr: bool)

let crossing = false -> pre req and (not (pre crossing));
req = false -> (not pre req) and pressed;
tlag = false -> ((not pressed) or req) and (not crossing);
tlbg = false -> ((not pressed) or req) and (not crossing);
tlar = true -> crossing;
tlbr = true -> crossing;
plag = false -> crossing;
plbg = false -> crossing;
plar = true -> not crossing;
plbr = true -> not crossing;
tel

4.3 Industrial Case Study

Using the approaches described above we automatically translated real world
railway interlockings and safety properties into the Dimacs format (for IV),
the TPTP language (for BMC, IV, and TI) and the SCADE language. The
verification results gained have been positive. For every safety condition the
tools have either given a successful verification, or a counter example (trace).
All results have been obtained within the region of seconds.

In the following we report on the verification of a small, but real world
interlocking which actually is in use on the London Underground. The ladder
logic program consists of approximately six hundred variables and three hundred
and fifty rungs. Concerning typical verification conditions, slicing reduces the
number of rungs down to 60 rungs, i.e., the program size is reduced by a factor
of 5. All experiments reported have been carried out on a computer with the
operating system Ubuntu 9.04, 64-bit edition, an Intel Q9650, Quad core CPU
with 3GHz, and a System Memory of 8GB DDR2 RAM.

Evaluation with an Open Source Tool The first condition encodes that
if a point has been moved, it must have been free before. Here, the verification
actually fails. IV yields a pair of states within 0.75s, while BMC produces an error
trace of length 3 in 0.81s, TT produces the same trace. The rail engineers were
able to exclude this counter example as a false positive. By adding justifiable
invariants we could exclude this false positive. The second condition excludes
that the program gives an inconsistent command, namely, that a point shall be

set to normal and to reverse at the same time. IV proves this property in 0.71s;
BMC yields K-safety for up to 1000 steps, after which we ran out of memory;
BMC on the slided program is possible up to 2000 steps; TI does not terminate,
neither for the original nor for the sliced version. Our experience is that IV can
deal with real world examples. Slicing yields an impressive reduction of the size
of the ladder logic program. It is beneficial when producing counter examples
with BMC as it reduces the runtime and also helps with error localisation.

Verifying the Industrial Case Study using SCADE All above safety con-
ditions take times less than 1s [19]. We attempted the verification of 109 safety
conditions out of these 54 were valid and 55 produced counter examples. The
latter are false positives and were eliminated by adding invariants as described
above. The total time for the verification and production of counter examples
for all of these safety conditions was under 10 seconds. This may be in part due
to some support for multi-core processors allowing the SCADE suite to dispatch
multiple verification tasks efficiently. Generally, in the process of removing false
positives approximately one hundred invariants were added. Overall, this shows
that SCADE is a viable option for the verification of railway interlockings.

5 Conclusion

The overall result is that the verification step described works out: the required
translations can be automated, the current tools scale up to real world problems,
the gained benefits are convincing enough for the company Invensys to change
its practice. Concerning proof technology, it is a matter of taste / philosophy /
further constraints if one prefers open software or commercial products.

Acknowledgement: Our thanks go to Ulrich Berger for advice on the semantics
of ladder logic formulae.

References

1. P. Abdulla, J. Deneux, G. Stalmarck, H. Argen and O. Akerlund. Designing safe,
reliable systems using SCADE. In LNCS 4314:115-129, Springer 2006.

2. P. Caspi, D. Pilaud, N. Halbwachs and J. A. Plaice. LUSTRE: a declarative lan-
guage for real-time programming. In Proceedings of POPL’87, pp178-188, 1987.

3. A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano. Formal verification of a
railway interlocking system using model checking. FACS 10(4):361-380, Springer
1998.

4. K. Claessen and N. Sorensson. New techniques that improve mace-style finite model
finding. In Proceedings of CADE’03 Workshop: Model Computation, 2003.

5. E. Clarke, A. Biere, R. Raimi and Y. Zhu. Bounded model checking using satisfi-
ability solving. Formal Methods in System Design 19(1):7-34, Kluwer, 2001.

6. N. Een and N. Soérensson. Temporal induction by incremental SAT solving. ENTCS
89(4):543-560, 2003.

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

W. Fokkink and P. Hollingshead. Verification of interlockings: from control tables
to ladder logic diagrams. In Proceedings of FMICS’98, pp171-185, 1998.

J. Groote, J. Koorn and S. Van Vlijmen. The safety guaranteeing system at station
Hoorn-Kersenboogerd. in Proceedings of Compass’95, pp57-68, 1995.

K. Han and J. Park. Object-oriented ladder logic development framework based
on the unified modeling language. In Computer and Information Science, pp33-45,
Springer, 2009.

A. Haxthausen. Automated generation of formal safety conditions from railway
interlocking tables. STTT, Springer (to appear).

IEC 61131-3 edition 2.0 2003-01. International standard. Programmable con-
trollers. Part 3: Programming languages. January 2003.

P. James. SAT-based model checking and its applications to train control software.
MRes Thesis, Swansea University, 2010.

P. James and M. Roggenbach. Automatically verifying railway interlockings using
SAT-based model checking. in Proceedings of AVoCS’10. Electronic Communica-
tions of EASST 35, 2010.

K. Kanso. Formal verification of ladder logic. MRes Thesis, Swansea University,
2009.

K. Kanso. Agda as a platform for the development of verified railway interlocking
systems. PhD Thesis, Swansea University, 2012.

K. Kanso, F. Moller and A. Setzer. Automated verification of signalling principles
in railway interlocking systems. ENTCS 250:19-31, 2009.

K. Kanso and A. Setzer. Specifying railway interlocking systems. In Proceedings of
AVoCS’09, pp233-236, 2009.

K. Kanso and A. Setzer Integrating automated and interactive theorem proving in
type theory. In Proceedings of AVoCS’10, 2010.

A. Lawrence. Verification of railway interlockings in SCADE. MRes Thesis,
Swansea University, 2011.

A. Lawrence and M. Seisenberger. Verification of railway interlockings in SCADE.
In Proceedings of AVo(CS’10, 2010.

M. Leach (editor). Railway Control Systems: a sequel to Railway Signalling. A &
C Black, 1991.

Minisat. http://minisat.se.

M. Rausch and B. Krogh. Formal verification of PLC programs. In Proceedings of
the American Control Conference. IEEE, 1998.

G. Stalmarck. System for determining propositional logic theorems by applying
values and rules to triplets that are generated from boolean formula. US Patent:
5,276,897, 1994.

The TPTP problem library for automated theorem proving.
http://www.cs.miami.edu/ tptp/.

G.S. Tseitin. On the complexity of derivation in propositional calculus. Ina Struc-
tures in Constructive Mathematics and Mathematical Logic, Steklov Mathematical
Institute, 1968.

W.G. Vincenti. What engineers know and how they know it. The Johns Hopkins
University Press, 1990.

B. Zoubek, J.-M. Roussel and M. Kwiatkowska. Towards automatic verification of
ladder logic programs. In Proceedings of CESA’03, Springer 2003.

