
Verification of Scheme Plans using CSP||B

Philip James1, Faron Moller1, Hoang Nga Nguyen3, Markus Roggenbach1,
Steve Schneider2, Helen Treharne2, Matthew Trumble2, and David Williams4

1 Swansea University, UK
2 University of Surrey, UK

3 University of Nottingham, UK
4 VU University Amsterdam, Netherland

Abstract. The paper presents a tool-supported approach to graphically
editing scheme plans and their safety verification. The graphical tool is
based on a Domain Specific Language which is used as the basis for
transformation to a CSP‖B formal model of a scheme plan. The models
produced utilise a variety of abstraction techniques that make the anal-
ysis of large scale plans feasible. The techniques are applicable to other
modelling languages besides CSP‖B. We use the ProB tool to ensure the
safety properties of collision, derailment and run-through freedom.

1 Introduction

In a series of papers [1–7] we have been developing a new modelling approach
for railway interlockings. This work has been carried out in conjunction with
railway engineers drawn from our industrial partner. By involving the railway
engineers from Invensys, we benefit twofold: they provide realistic case studies,
and they guide the modelling approach, ensuring that it is natural to the working
engineer.

We base our approach on CSP||B [8], which combines event-based with state-
based modelling. This reflects the double nature of railway systems, which in-
volves events such as train movements and – in the interlocking – state based
reasoning. The formal models are by design close to the domain models. To the
domain expert, this provides traceability and ease of understanding. The valid-
ity of this claim was demonstrated in particular in [3] where a non-trivial case
study – a complex double junction – was provided, a formal model of which was
understandable and usable by our industrial partners.

In the UK, the development of interlockings follows prescribed processes from
Railway Authorities such as the Governance for Railway Investment Projects
(GRIP) process from Network Rail. In this process, the development of an in-
terlocking consists of five phases where the first four phases are responsible for
defining the track plan and determining routes to be used while, in the last
phase, a contractor such as Invensys participates and is responsible for design-
ing a control table for the track plan, implementing the interlocking and choosing
appropriate track equipment. To this end, our paper offers a work flow which
enables safety to be validated in each of these phases.

In [4, 5] we addressed how to effectively and efficiently verify safety properties
within our CSP||B models. The properties of interest are collision, derailment
and run-through freedom. To this end we developed a set of abstraction tech-
niques for railway verification that allow the transformation of complex CSP||B
models into less involved ones; we proved that these transformations are sound;
and we demonstrated that they allow one to verify a variety of railway systems
via model checking. The first set of abstractions reduces the number of trains
that need to be considered in order to prove safety for an unbounded number of
trains. Their correctness proof involves slicing of event traces. Essentially, these
abstractions provide us with finite state models. The second set of abstractions
simplifies the underlying track topology. Here, the correctness proof utilizes event
abstraction specific to our application domain similar to the ones suggested by
Winter in [9]. These abstractions make model checking faster.

Still present in our approach from the aforementioned papers was the need
to write the formal models by hand. In [6] we described our OnTrack toolset5,
an open tool environment allowing graphical descriptions to be captured and
supported by formal verification. This enables an engineer to visually represent
the tracks and signals etc., within a railway network.

In this paper we continue the dissemination of our modelling approach which
now also incorporates multi-directional tracks. We demonstrate that when chan-
ges are made to the models they are systematic and traceable; again this addition
will be incorporated within our OnTrack tools.

The paper is organised as follows. In Section 2 we introduce our modelling
language CSP||B so that we have the basis for discussing our workflow and
provide examples. In Section 3 we introduce concepts in railway systems. In
Section 4 we describe the workflow for our CSP||B modelling approach and
summarise where the different abstraction techniques fit into the workflow. In
Section 5 we introduce the modelling concepts of multi-directional travel and
provide two illustrative examples. The application of our approach is presented
in Section 6 via verification of our example scenarios. In Section 7 we put our
work in the context of related approaches and finally conclude with future plans
for the approach.

2 Background to CSP||B

The CSP||B approach [8] allows us to specify communicating systems using a
combination of the B-Method [10] and the process algebra CSP (Communicating
Sequential Processes) [11]. The overall specification of a combined communicat-
ing system comprises two separate specifications: one given by a number of CSP
process descriptions and the other by a collection of B machines. Our aim when
using B and CSP is to factor out as much of the “data-rich” aspects of a system
as possible into B machines. The B machines in our CSP||B approach are classi-
cal B machines, which are components containing state and operations on that

5 OnTrack available for download from http://www.csp-b.org.

state. The CSP||B theory [8] allows us to combine a number of CSP processes
Ps in parallel with machines Ms to produce Ps ‖ Ms which is the parallel com-
bination of all the controllers and all the underlying machines. Such a parallel
composition is meaningful because a B machine is itself interpretable as a CSP
process whose event-traces are the possible execution sequences of its operations.
The invoking of an operation of a B machine outside its precondition within such
a trace is defined as divergence [12]. Therefore, our notion of consistency is that a
combined communicating system Ps ‖ Ms is divergence-free. We do not consider
deadlock-freedom in this paper as it is concerned with liveness, and the focus of
the paper is on safety.

A B machine clause declares a machine and gives it a name. The variables
of a B machine define its state. The invariant of a B machine gives the type
of the variables, and more generally it also contains any other constraints on
the allowable machine states. There is an initialisation which determines the
initial state of the machine. The machine consists of a collection of operations
that query and modify the state. Besides this kind of machine we also define
static B machines that provide only sets, constants and properties that do not
change during the execution of the system.

The language we use to describe the CSP processes for B machines is as
follows:

P ::= e?x !y → P(x) | P1 2 P2 | P1 u P2 |
if b then P1 else P2 end | N (exp) |
P1 ‖ P2 | P1 A‖B P2 | P1 ||| P2

The process e?x !y → P(x) defines a channel communication where x repre-
sents all data variables on a channel, and y represents values being passed along
a channel. Channel e is referred to as a machine channel as there is a corre-
sponding operation in the controlled B machine with the signature x ←− e(y).
Therefore the input of the operation y corresponds to the output from the CSP,
and the output x of the operation to the CSP input. Here we have simplified
the communication to have one output and one input but in general there can
be any number of inputs and outputs. The other CSP operators have the usual
CSP semantics.

In this paper we omit a detail discussion of the semantic models used for
reasoning of CSP||B models. In [5] we discuss that the traces models is enough
to deal with the safety properties of railway interlockings.

3 Railway systems

Together with railway engineers we developed a common view on the information
flow in railways. In physical terms a railway consists of, at least, four different
components as illustrated in Figure 1:

– The Controller selects and releases routes for trains.

– The Interlocking serves as a safety mechanism with regards to the Controller
and, in addition, controls and monitors the Track equipment. The

– Track equipment consists of elements such as signals, points, and track cir-
cuits. Signals can show the different aspects to indicate when trains can
proceed; points can be in normal position (leading trains straight ahead)
or in reverse position (leading trains to a different line) and track circuits
detect if there is a train on a track.

– Finally, Trains have a driver who determines their behaviour.

Controller

Interlocking

 Track

equipment

Trains

Route request, Request response,

Signal and point

settings Track occupation

Signal aspect Current movement

Route release Release response

Fig. 1. Information flow.

For the purposes of modelling, we simplify the signals in railway systems to
have only two aspects. We also make a further assumption that track equipment
reacts instantly and is free of defects.

The information flow shown in Figure 1 is as follows: the controller sends
a request message to the interlocking to which the interlocking responds; the
interlocking sends signalling information to the track equipment and receives
information from track sensors on whether a track element is occupied. The
interlocking and the trains interact indirectly via the track equipment only. The
interlocking serves as the systems clock: in a cycle the status of all the track
sensors are read then the interlocking reacts to all of them with one change of
state. Routes cannot be in conflict since requests to select and release routes are
sequentialised. In our modelling we will abstract away from modelling the track
equipment explicitly.

Each railway system is provided from the railway industry as a scheme plan
which consists of a track plan (describing the topological relation between el-
ements of the track equipment such as which tracks are connected and where
signals are), a control table (determining how the interlocking of the railway
system sets signals, moves points and lock points where, for each signal, there

is one or more rows describing the condition under which the signal can show
proceed) and a number of release tables (specifying when locks on points can
be released). More details about control tables and release tables can be found
in [3]. To this end, our task is to provide models which faithfully capture the
behaviour associated with these railways systems.

Fig. 2. CSP||B Architecture.

In this setting, we consider three safety properties:

1. collision-freedom excludes two trains occupying the same track;
2. runthrough-freedom says that whenever a train enters a point, the point is

set to cater for this;
3. no-derailment says that whenever a train occupies a point, the point does

not move.

Our modelling approach of railway systems in CSP||B, presented in [3], is re-
stated in Figure 2. The centralised control logic is represented in the Interlocking
machine, whereas the train behaviour is controlled by CSP processes defined in
the CTRL script. These process and machine synchronise on common events. In
the next sections we illustrate some aspects of the CSP processes and machines
via examples 6 and focus on how multi-directional travel of trains on tracks is
modelled.

4 Workflow

In this section, we present the workflow that we employ in our methodology
in order to verify safety properties of railway systems. Figure 3 demonstrates
the essential steps of the workflow which makes use of two tools: OnTrack [6]

6 Examples available for download from http://www.csp-b.org.

Minimised
abstract sub-

scheme plan(s)

Scheme plan Track plan

Verification in
ProB

Generate
Tables

Formal
specification

Tr
a

n
sf

o
rm

a
ti

o
n

Minimised
sub-formal

specification(s)

Tr
a

n
sf

o
rm

a
ti

o
n

Review and Correct (by hand)

Safety
Properties

Failed

Safety
Properties

OK

Abstraction Implies

Fig. 3. CSP||B modelling and verification workflow.

and the ProB model checker [13]. Here, OnTrack is implemented in a typical
EMF/GMF/Epsilon7 architecture [14, 15] where a graphical editor realised in
GMF is the front end for the user.

In this workflow, a user initially draws a Track Plan using the graphical
front end in the OnTrack tool. Figure 4 shows the OnTrack editor that consists
of a drawing canvas and a palette. Graphical elements from the palette can be
positioned onto the drawing canvas.

Fig. 4. A screenshot of “OnTrack” modelling a track plan.
.

Then the first transformation, Generate Tables leads to a Scheme Plan, which
is a track plan and its associated control and release tables. Track plans and
scheme plans are models formulated relative to a modified version of the DSL
developed by Bjørner [16]. The concepts of such a DSL can be easily captured
within an ECORE meta-model which underlies our toolset. A small excerpt of

7 EMF and GMF stand for Eclipse Modeling Framework and Graphical Modeling
Project, respectively.

topological concepts within our meta-model is given in Figure 5. In this DSL,

Fig. 5. Static concepts from Bjørner’s DSL.

a Railway Diagram is built from Units, Connectors and Signals. Units come in
two forms: Linear representing straight tracks, or Point representing a splitting
track. All Unit(s) are attached together via Connector(s). Finally, Signals can
be placed on Linear units and at Connectors. To this end, the implementation
of the GMF front-end for this meta-model involves selecting the concepts of
the meta-model that should become graphical constructs within the editor and
assigning graphical images to them.

A scheme plan is the basis for subsequent workflows that support its ver-
ification. Scheme plans can be captured as formal specifications. The simplest
transformation, indicated by the Transformation dashed arrow, is to produce one
Formal specification that is a faithful representation of the scheme plan. This
transformation is a mapping from the railway DSL meta-model to the CSP||B
meta-model and its subsequent representation as CSP||B script files that can be
inputted into ProB. This automated transformation makes use of the finitisa-
tion theory in order to be able to perform bounded model checking of the formal
specification [4, 7]. The finitisation theory allows us to reduce the problem of
verifying of scheme plans for safety (i.e., freedom from collision, derailment, and
run-through) for any number of trains to that of a two-train scenario.

Nonetheless, even when examining a reduced number of trains the formal
specifications of realistic examples will inevitably contain too many states for
safety analysis. Thus, our methodology enables us to carry out two forms of
abstraction on a scheme plan:

(1) Covering Abstraction supports the decomposition of a scheme plan
with a set of smaller sub-scheme plans. Any particular track in a scheme plan
has a ‘zone of influence’: the other tracks which need to be considered to see
what will happens on that track (e.g., when routes including it are enabled,
when trains are approaching it, etc.). In particular, we only need to look at the
zone of influence in order to see if a collision is possible on that track. To analyse
if a collision, derailment or run-through is possible on that track, it is enough
just to analyse the behaviour of trains within the zone of influence. We can do
this for all the tracks, in each case just analysing for collisions, derailment or

run-through within its zone of influence. This is called a covering. In general each
zone of influence is much smaller than the overall track plan, so the analyses will
be much quicker, and in practice can be done efficiently.

(2) Topological Abstraction supports the collapsing of tracks of a scheme
plan to minimise the number of superfluous tracks in a plan, i.e., ones which
do not impact on safety. Thus, for a particular track plan we take a sequence
of tracks, and think of them as one single track. We do this for a number of
sequences of tracks along the way. It is a topological abstraction if we can match
moves around the original track plan with moves around the smaller one, so
changes such as routes being enabled, points being released, trains being on
particular routes, points being set, trains being at lights must still match for
this collapsing to be a topological abstraction. If this is true then it means that
we can analyse the behaviour of trains on the smaller scheme plan (which is
easier because there are fewer positions to consider) and the results that we get
will still be true for the original larger scheme plan.

We have proved the soundness of these abstractions in [4, 7]. In our method-
ology we first apply covering abstraction to generate sub-scheme plans and then
apply topological abstraction to each of them. Using these abstractions we fol-
low the Abstraction vertical workflow from the scheme plan to produce one or
more Minimised abstract sub-scheme plan(s). One or more such plans may be
produced because as we shall see in our examples, in Section 5, it may not al-
ways be possible to perform covering, and in which case the only abstraction
that may yield a reduction in the number of tracks in the plan will be topo-
logical abstraction. Applying these abstractions is done at the DSL level and
is independent of the formalism being used to represent the abstract CSP||B
specification. Currently, the covering abstraction is not fully automated but is
ongoing development work within the OnTrack tool.

Following abstraction (top left box on the diagram) the Transformation work-
flow, described earlier, can be applied to the minimised abstract sub-scheme
plans to produce corresponding sub-formal specifications. All of the transforma-
tions that are performed by the OnTrack tool are validated via manual review.
The verification of all of these sub-formal specifications implies the safety of the
formal specification, as illustrated by the Implies arrow workflow; this result has
been formally proved [4, 7].

Once OnTrack produces the sub-formal specifications they are all system-
atically verified using the ProB model checker to ensure that the models are
collision- and derailment-free and contain no run-throughs. Successful checks
verify that the safety properties hold for the particular scheme-plan. The work-
flow has the potential for round-trip engineering where the counter examples
produced from unsuccessful model checking are automatically fed back into the
OnTrack tool. This has not, as yet, been incorporated into the tool but it would
provide an improved tool-supported workflow; this is illustrated using the dotted
Review and Correct arrow on the workflow.

Entry1 AA

ABExit2 AC AD AE AF BA

Exit1

Entry2

S1

S2

P1 P2

Fig. 6. Track plan for the tunnel example

5 Modelling of Multi-directional Examples of CSP||B
railway models

In this section we provide details of the extension to our modelling approach in
CSP||B which allows for multi-directional railway systems.

5.1 Tunnel Example

Consider the track plan in Figure 6 where tracks AB , AC and AD are bi-
directional tracks. For route R1 associated with signal S1 their direction is left
to right, whereas for route R2 associated with signal S2 their direction is right
to left. The CSP process that controls the movement of trains is TRAIN CTRL.
Figure 7 illustrates the fragment of it controlling the movement of a train from
a track that is neither an exit one or one which has a signal on it. The move
event is parameterised with the train identifier t and its current position p.
This event is a synchronisation with a move B operation which returns its new
position newp. Therefore, moving from track AC to AD corresponds to the event
move.t .AC .AD for a particular train t .

1 TRAIN CTRL(t , pos) = . . .
2 2 pos /∈ EXIT ∧ pos /∈ SIGNALHOMES &
3 move!t .pos?newp → TRAIN CTRL(t ,newp)
4 2 . . .

Fig. 7. Fragment of the CSP control process for trains.

Note, there is no information in the CSP event that corresponds to the di-
rection of travel. All this information is contained in the Topology machine and
used in the move operation within the Interlocking machine. In the Topology ma-
chine there are three relations which define the direction of tracks. For example,
the relation direction shown in Figure 8 shows that the model needs to contain
details of the way tracks are connected together, and this is explicitly done via
the notion of identified connectors — the glue between tracks and points.

1 direction ∈ TRACK ↔ CONNECTOR ∗ CONNECTOR ∧
2 direction = {. . . ,
3 AA 7→ (C1,C2), . . . , /* uni-directional tracks */
4 AC 7→ (C3,C4),AC 7→ (C4,C3), . . . /* bi-directional tracks */ }

Fig. 8. Fragment of the direction relation from Topology.

As we saw above the notion of a train’s position in the CSP was captured
using two parameters (t , pos). In the invariant of the Interlocking machine a
similarly named function pos also includes information about the connectors, as
shown in Figure 9. In its initialisation pos := ∅ since there are no trains on the
tracks. The move operation updates the track and connectors related to train t
in pos each time the train moves. (In earlier papers, e.g., [3], pos was simply a
partial function between trains and tracks and direction was not required.)

1 pos ∈ TRAIN 7→ ALLTRACK∗
2 (ALLCONNECTOR ∗ALLCONNECTOR)

Fig. 9. pos function from Interlocking.

In addition to B operations which define the behaviour of movement, granting
and releasing of route requests the OnTrack tool automatically produces B op-
erations to support the verification of safety properties. Three B operations are
produced, collision, derailment and run-through. Collision is encoded as follows:

1 collision =
2 SELECT
3 ∃ t1, t2 ∈ TRAIN ∧ t1 6= t2∧
4 t1 ∈ dom(pos) ∧ t2 ∈ dom(pos)
5 (dom(pos(t1))− (EXIT ∪ ENTRY)) ∩
6 (dom(pos(t2))− (EXIT ∪ ENTRY)) = ∅
7 THEN skip
8 END;

Here collision is detected when two different trains t1 and t2 occupy the
same track segment (different from the EXIT and ENTRY tracks). The collision
condition will be enabled when the two trains are at the same position.

Collision freedom can then be established by model checking the validity of
the following CTL formula:

AG(not(e(collision)))

EntryAA AB AC AD

BB BC BD Exit

S2

S3

BA BE

S1

AE

P1 P3

P3 P4

Fig. 10. Track plan for the buffer example

This formula is false if collision is enabled. In the CTL variant of ProB AG ,
stands for “on all paths it is globally true that”, and e(a) stands for “event a is
enabled”.

5.2 Buffer Example

Our next example is also multi-directional as shown in Figure 10. Interestingly,
track BC has three directions, i.e., {BC}Cdirection = {(C 12,C 11), (C 11,C 12),
(C 7,C 12)}, where C 7 is the connector between tracks AC and BC , C 11 is
between BB and BC , and C 12 is between BC and BD , respectively.

It also serves to illustrate how additional complexity can easily be traced
within a formal specification. We model the behaviour of buffers, i.e., tracks
where trains can turn around; in our example the buffers are AA and BA. Two
routes are associated with signal S1, i.e., route R1A is associated with AE , AD ,
AC , AB and AA and R1B is associated with AE , AD , BD , BC , BB and BA.
Thus, when a train is on route R1A and is on track AA it can change direction
and then follow route R2 which is associated with signal S2. Similarly, for route
R3 associated with signal S3.

This additional behaviour requires three additions to the CSP processes and
B machines:

– The additional definition of BUFFER = {AA,BA} in the Context machine
and similarly in the CSP types.

– A new changeDirection operation as shown in Figure 11. The purpose of
this operation is to simply modify the direction of the connectors for the
particular buffer track on which the train t currently resides. Hence, chang-
ing the direction of train t on track AA means changing the maplet (t 7→
AA, (C 1,C 0)) to (t 7→ AA, (C 0,C 1)) within the pos function. This means
that we can leave the move operation unchanged.

– Within the CSP, rather than disturb the existing processes, we define a new
process, BUFFERP (b, t) in Figure 12 which defines that after a train moves
onto the buffer track b it must change direction before it can move off it. In
the model there will be a separate buffer process for each buffer and they are
independent of each other. These new processes are combined to reformulate
the overall CSP processes contained in the CTRL script.

1 changeDirection(t , currp) =
2 PRE t ∈ TRAIN ∧ t ∈ dom(pos)∧
3 {currp} = dom({pos(t)}) ∧ currp ∈ BUFFER
4 THEN
5 movedPoints := {} ||
6 LET(track , d) BE (track , d) = pos(t) IN
7 LET(d1, d2) BE (d1, d2) = d IN
8 pos(t) := (track , (d2, d1))
9 END

10 END
11 END;

Fig. 11. changeDirection method from Interlocking.

1 BUFFERP (b, t) = move!t?p!b → changeDirection.t .b
2 → move.t .b?newp → BUFFERP (b, t)

Fig. 12. BUFFERP process in CTRL.

6 Experimental result

In this section, we present the experiment result when verifying safety proper-
ties of the tunnel and buffer examples presented in the previous section. These
experiments are carried out by following the verification workflow defined in
Section 4.

In order to verify the tunnel example, an engineer first uses the OnTrack tool
to draw the track plan as depicted on Figure 6. Then the safety properties of the
example can be verified by loading the formal specification produced by OnTrack
into the ProB tool and performing this check. Here, a total of 1,516 distinct
states were examined in order to determine that no collision was possible. Our
methodology currently requires us to do this loading by hand but automating
this as a batch process for all the safety properties could easily be done.

Similarly, verification of the buffer example can be carried out by using the
OnTrack tool to draw the track plan as depicted on Figure 10. The state space
of the formal specification produced by OnTrack required by ProB to model
check the safety properties for the formal specification of the Buffer example
was 18,510 states, significantly more than in the tunnel example. In Section 4
we noted that it may not always be feasible to model check a complex scenario
but our methodology supports the systematic generation of all the sub-scheme
plans for a particular scheme plan. The track plan for one of the sub-scheme
plans of the buffer example is shown in Figure 13. It illustrates the plan for the
track AC constructed using the covering abstraction. The highlights from this
plan are as follows:

EntryAA AB AC AD

BC BD

S2 S1

AE

P1 P3

Fig. 13. Sub-track plan for track AC of the buffer example

– The point BC in the overall buffer example can now be considered as an
exit track and after which we do not need to consider the behaviour of
subsequent linear tracks and points. The reason being is that all that needs
to be captured is what happens to the state when a train moves off the point
AC and that this can be represented using a simple linear track rather than
a point.

– The point BD is similarly converted to an exit track.
– The current version of our covering technique has not considered the impact

of buffers on the abstraction of the scheme plans. Therefore, we must include
them in the zone of influence. Therefore, both tracks AA and AB retain their
bi-directional properties in the sub-scheme plan. We shall of course examine
in future work whether such tracks can be further reduced.

– Notice also that we need not consider the path along Entry , AE , AD , BD ,
BC , BB , BA because it does not belong to the zone of influence as it does
not contain the track AC , but of course Entry , AE and AD are included
because they are on the normal route R1A and BD is included for the above
reason.

Running the formal specification of the sub-scheme plan for AC through
ProB gives a state space of 3,995 compared to 18,510 states for the full specifi-
cation. We have also verified that the three important safety properties hold for
this sub-scheme plan. Methodologically, we would then be required to run all
the sub-scheme plans through ProB and by appealing to our theoretical results
we would conclude that the overall buffer example from Figure 10 preserves the
safety properties.

7 Related work

The railway interlocking problem has long been studied by the Formal Methods
community, and our work builds upon prior approaches to the modelling and
verification of railways. Prominent studies from the B community include [17,
18] whilst [19, 20] are classical contributions from process algebra and [21] uses
techniques from Algebraic Specification. On a lower abstraction layer, [22–25]
verify the safety of interlocking programs with logical approaches.

Our modelling is most related to Winter’s uni-directional approach in CSP [26]
and Abrial’s bi-directional modelling in Event-B [27], which however excludes

that train can turn around at end stations. Winter [26] presents a generic, event-
based railway model in CSP as well as generic formulations of two safety prop-
erties: CollisionFreedom and NoMovingPoints. Overall, this results in a generic
architecture and a natural representation of two safety properties. Traceability,
however, is limited. There are relations in the model which are derived from
the control table. For example, the driving rule “trains stop at a red signal”
is distributed over different parts of the model: it is a consequence of the fact
that (1) the event “move to the first track protected by a signal” belongs to
a specific synchronziation set and (2) a red signal does not offer this event.
Purely event-based modelling leads to such decentralized control. Consequently,
the model has no interlocking cycle. Chapter 17 of the book by Abrial [27] gives
an excellent detailed description and analysis of the railway domain, deriving
a total of 39 different requirements. The modelling approach is generic, even
though no concrete model is proven to be correct. Traceability in a tower of
specifications can be complex for various reasons. For instance, a requirement
can be the consequence of invariants from different levels. The relation between
intended properties and the model remains an informal one. This is in contrast
to other approaches (including Winter’s and our own) which directly represent
the intended property in the formal world and then prove that the modelled
property is a mathematical consequence of the formal model. Furthermore, the
approach is monolithic: behaviour is not attached to different entities to which
they relate.

To put our work into context we must first clarify that railway verification
falls into two categories: the verification of railway designs prior to their imple-
mentation and the verification of the implementation descriptions themselves.
Our work is in the first area. A comparison using different model checkers in the
analysis of control tables has been conducted by Ferrari et al. [28] and falls into
the first category. Winter in a recent paper [29] considers different optimising
strategies for model checking using NuSMV and demonstrates the efficiency of
their approach on very large models. These analyses also fall into the first cat-
egory but the models are flat in structure compared to our models as they are
defined in terms of boolean equations and do not focus on providing behavioural
models. The analysis of interlocking tables (cf. control tables) by Haxthausen [30]
also falls into the first category and is supported by automated tools that gen-
erate the models. Cimatti et al. [25] also have had considerable success using
NuSMV but their analysis is focussed on the implementation descriptions.

8 Conclusion

In this paper we provided an overview of our methodology that uses the OnTrack
tool to provide a graphical front-end for the automatic generation of formal spec-
ifications. The formal specifications are then separately model checked using the
ProB tool. We described the architecture of a CSP||B formal specification of a
scheme plan giving details of the new aspects that allow the modelling of multi-
directional travel. We appreciate the absolute necessity to include these aspects

in our CSP||B formal specifications and recognise that the majority of the related
work includes such detail, for example [30]. Our aim by demonstrating its inclu-
sion incrementally was to show the robustness of the CSP||B architecture and the
ease by which new modelling aspects can be included. Similarly, additional de-
velopment of the OnTrack tool-support can also be achieved incrementally. We
are currently completing the implementation of the covering abstractions and
the integration of the output from ProB model checking with OnTrack in order
to provide round-trip engineering to the graphical editor. This will mean that
the engineer is not required to manipulate the formal specifications when safety
properties are violated. Instead, the engineer will be able to change a graphical
scheme plan, re-generate the formal specifications and re-run the model checking
in order to verify that the amended scheme plan preserves safety (i.e., freedom
from collision derailment and run-through).

Heitmeyer in [31] discusses the importance of complete abstractions. Our ab-
stractions are sound. It is future theoretical work to investigate if completeness
can be established. Furthermore, we also would like to extend our methodology
so that capacity and safety of large-scale railway systems can be studied simul-
taneously. One way to obtain this goal is to combine our modelling approach
with others which take capacity into account such as presented in [32].

Acknowledgment

Thanks to S. Chadwick and D. Taylor from the company Invensys Rail for their
support and encouraging feedback.

References

1. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Combining
event-based and state-based modelling for railway verification. Technical Report
CS-12-02, University of Surrey (2012)

2. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Using
ProB and CSP‖B for railway modelling. In: Proceedings of IFM’12 and ABZ 2012
Posters and Tool demos session. (2012) 31–35

3. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Railway
modelling in CSP‖B: The double junction case study. Electronic Communications
of the EASST 53 (2012)

4. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and model checking abstractions of complex railway models using CSP‖B. In:
Proceedings of HVC’12. LNCS 7857, Springer (2013)

5. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
On modelling and verifying railway interlockings: Tracking train lengths. Technical
Report CS-13-03, University of Surrey (2013)

6. James, P., Trumble, M., Treharne, H., Roggenbach, M., Schneider, S.: Ontrack:
An open tooling environment for railway verification. In: NASA Formal Methods.
LNCS 7871, Springer (2013) 435–440

7. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
Techniques for modelling and verifying railway interlockings. STTT to appear.

8. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal
Asp. Comput. 17(4) (2005) 390–422

9. Winter, K., Robinson, N.: Modelling large railway interlockings and model checking
small ones. In: Proceedings of the 26th Australasian computer science conference-
Volume 16, Australian Computer Society, Inc. (2003) 309–316

10. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. CUP (1996)
11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
12. Morgan, C.: Of wp and CSP. Beauty is our business: a birthday salute to E. W.

Dijkstra (1990) 319–326
13. ProB: The ProB animator and model checker (ProB 1.3.6-final).

http://www.stups.uni-duesseldorf.de/ProB Accessed: 01/05/2013.
14. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit. Addison-Wesley Professional (2009)
15. Kolovos, D., Rose, L., Paige, R., Garćıa-Domı́nguez, A.: The Epsilon Book. The

Eclipse Foundation (2012)
16. Bjørner, D.: Formal Software Techniques for Railway Systems. In: CTS2000. (2000)
17. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification

for large scale B models with ProB. Formal Asp. Comput. 23(6) (2011) 683–709
18. Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line 7

(flushing) modernization project. In: ABZ. (2012) 369–372
19. Simpson, A., Woodcock, J., Davies, J.: The mechanical verification of solid-state

interlocking geographic data. In: Formal Methods Pacific 97, Springer (1997)
20. Morley, M.J.: Safety in railway signalling data: A behavioural analysis. In: 6th

International Workshop on HOLTPA, Springer (1993) 464–474
21. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed

railway control system. IEEE Trans. Software Eng. 26(8) (2000) 687–701
22. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking

control tables. FORMS/FORMAT 2010 (2011) 107–115
23. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles

in railway interlockings. ENTCS 250 (2009)
24. James, P., Roggenbach, M.: Automatically verifying railway interlockings using

SAT-based model checking. Electronic Communications of the EASST 35 (2010)
25. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M., San-

seviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS industrial
railway train spacing system. In: CAV, Springer (2012) 378–393

26. Winter, K.: Model checking railway interlocking systems. Australian Computer
Science Communications 24(1) (2002)

27. Abrial, J.R.: Modeling in Event-B. Cambridge University Press (2010)
28. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking

control tables. In: FORMS/FORMAT. (2010) 107–115
29. Winter, K.: Optimising ordering strategies for symbolic model checking of railway

interlockings. In: ISoLA (2). Volume 7610 of Lecture Notes in Computer Science.
(2012) 246–260

30. Haxthausen, A.: Automated generation of safety requirements from railway inter-
locking tables. In: ISoLA (2). Volume 7610 of Lecture Notes in Computer Science.
(2012) 261–275

31. Heitmeyer, C.L., Kirby, J., Labaw, B.G., Archer, M., Bharadwaj, R.: Using abstrac-
tion and model checking to detect safety violations in requirements specifications.
IEEE Trans. Software Eng. 24(11) (1998) 927–948

32. Isobe, Y., Moller, F., Nguyen, H.N., Roggenbach, M.: Safety and line capacity in
railways - an approach in Timed CSP. In: IFM. (2012) 54–68

