Science of Computer Programming 96 (2014) 315-336

Science of Computer Programming

-
cience of Computer

Contents lists available at ScienceDirect

www.elsevier.com/locate/scico

On modelling and verifying railway interlockings: Tracking

train lengths

@ CrossMark

Phillip James ¢, Faron Moller *-*, Hoang Nga Nguyen ¢, Markus Roggenbach?,

Steve Schneider®, Helen Treharne

a Swansea University, Wales, UK
b University of Surrey, England, UK

b

ARTICLE INFO

ABSTRACT

Article history:

Received 22 March 2013

Received in revised form 29 March 2014
Accepted 7 April 2014

Available online 18 April 2014

Keywords:

Railway verification
CSP|B

Modelling and analysis

The safety analysis of interlocking railway systems involves verifying freedom from colli-
sion, derailment and run-through (that is, trains rolling over wrongly-set points). Typically,
various unrealistic assumptions are made when modelling trains within networks in order
to facilitate their analyses. In particular, trains are invariably assumed to be shorter than
track segments; and generally only a very few trains are allowed to be introduced into the
network under consideration.
In this paper we propose modelling methodologies which elegantly dismiss these assump-
tions. We first provide a framework for modelling arbitrarily many trains of arbitrary length
in a network; and then we demonstrate that it is enough with our modelling approach to
consider only two trains when verifying safety conditions. That is, if a safety violation ap-
pears in the original model with any number of trains of any and varying lengths, then a
violation will be exposed in the simpler model with only two trains.
Importantly, our modelling framework has been developed alongside - and in conjunction
with - railway engineers. It is vital that they can validate the models and verification
conditions, and - in the case of design errors - obtain comprehensible feedback. We
demonstrate our modelling and abstraction techniques on two simple interlocking systems
proposed by our industrial partner. As our formalization is, by design, near to their way of
thinking, they are comfortable with it and trust it.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Formal verification of railway control software has been identified as one of the Grand Challenges of Computer Sci-
ence [1]. As is typical with Formal Methods, this challenge comes in two parts: the first addresses the question of whether
the mathematical models considered are legitimate representations of the physical systems of concern. The modelling of
the systems, as well as of proof obligations, needs to be faithful. The second part is the question of how to utilize available
technologies, for example model checking or theorem proving. Whichever verification process is adopted, it needs to be

both effective and efficient.

In a series of papers [2-5] we have been developing a new modelling approach for railway interlockings. This work
has been carried out in conjunction with railway engineers drawn from our industrial partner Invensys Rail. By involving
the railway engineers from the start, we benefit twofold: they provide realistic case studies, and they guide the modelling
approach, ensuring that it is natural to the working engineer.

* Corresponding author.

http://dx.doi.org/10.1016/j.scico.2014.04.005

0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.04.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://dx.doi.org/10.1016/j.scico.2014.04.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.04.005&domain=pdf

316 P. James et al. / Science of Computer Programming 96 (2014) 315-336

We base our approach on CSP|B [6], which combines event-based with state-based modelling. This reflects the double
nature of railway systems, which involves events such as train movements and - in the interlocking - state based reasoning.
In this sense, CSP||B offers the means for the natural modelling approach we strive for. The formal models are by design
close to the domain models. To the domain expert, this provides traceability and ease of understanding. This addresses
the first of the above stated challenges: faithful modelling. The validity of this claim was demonstrated in particular in [2]
where a non-trivial case study - a complex double junction - was provided which was understandable and usable by our
industrial partners.

In [3] we addressed the second challenge: that of how to effectively and efficiently verify safety properties within our
CSP||B models. To this end we developed a set of abstraction techniques for railway verification that allow the trans-
formation of complex CSP||B models into less involved ones; we proved that these transformations are sound; and we
demonstrated that they allow one to verify a variety of railway systems via model checking. The first set of abstractions
allows us to prove safety of a scheme plan which involves an unbounded number of trains by considering only a bounded
number of trains with the number dependent only on the number of routes in the scheme plan. Their correctness proof
involves slicing of event traces. Essentially, these abstractions provide us with finite state models. The second set of ab-
stractions simplifies the underlying track topology. Here, the correctness proof utilizes event abstraction specific to our
application domain similar to the ones suggested by Winter in [7]. These abstractions make model checking faster.

Still present in these approaches, however, are unrealistic assumptions about trains within networks: namely that the
trains are shorter than the track segments in the network, and that only a very few trains will ever enter the network. In
this paper we address these unrealistic assumptions. Firstly, we develop a modelling approach which incorporates train and
track lengths, allowing trains to span any number of track segments. Secondly, we provide an abstraction technique which
allows us to detect safety violations in networks involving an arbitrary number of trains by considering only two trains
(thus markedly improving on our previous result).

The paper is organised as follows. In Section 2 we discuss our modelling language CSP||B. In Section 3 we introduce
railway concepts and our two case studies, and describe how they are modelled in CSP||B. In particular, we outline in detail
the modelling of train and track lengths. In Section 4 we present our main result that considering two trains suffices in our
analyses for safety properties. The application of our approach is presented in Section 5 via verification of our example
scenarios. Finally, in Section 6 we put our work in the context of related approaches.

2. Background to CSP||B

The CSP||B approach allows us to specify communicating systems using a combination of the B Method [8] and the
process algebra CSP (Communicating Sequential Processes) [9]. The overall specification of a combined communicating
system comprises two separate specifications: one given by a number of CSP process descriptions and the other by a
collection of B machines. Our aim when using B and CSP is to factor out as much of the “data-rich” aspects of a system
as possible into B machines. The B machines in our CSP|B approach are classical B machines, which are components
containing state and operations on that state. The CSP||B theory [6] allows us to combine a number of CSP processes Ps in
parallel with machines Ms to produce Ps || Ms which is the parallel combination of all the controllers and all the underlying
machines. Such a parallel composition is meaningful because a B machine is itself interpretable as a CSP process whose
event-traces are the possible execution sequences of its operations. The invoking of an operation of a B machine outside
its precondition within such a trace is defined as divergence [10]. Therefore, our notion of consistency is that a combined
communicating system Ps || Ms is divergence-free and also deadlock-free [6].

A B machine consists of a collection of clauses and a collection of operations that query and modify the state. The
MACHINE clause declares the abstract machine and gives its name. The VARIABLES clause declares the variables that are used
to carry the state information within the machine. The INVARIANT clause gives the type of the variables, and more generally
it also contains any other constraints on the allowable machine states. The INITIALISATION clause determines the initial state
of the machine.

Operations of a B machine are given in one of the following formats:

preconditioned operation - 0o <— op(ii) = PRE P THEN S END: if this is called when P holds then it will execute S, otherwise
it will diverge.
guarded event - op = SELECT P THEN S END: this will execute S when P holds, and will block when P is false.

The declaration oo <— op(ii) for preconditioned operation introduces the operation: it has name op, a (possibly empty)
output list of variables oo, and a (possibly empty) input list of variables ii. The precondition of the operation is predicate P.
This must give the type of any input variables, and can also give conditions on when the operation can be invoked. If
it is invoked outside its precondition then divergence results. Finally, the body of the operation is S. This is a generalised
substitution, which can consist of one or more assignment statements (in parallel) to update the state or assign to the output
variables. Conditional statements and nondeterministic choice statements are also permitted in the body of the operation.
The guarded event simply has a name op. If its condition fails, then its execution is blocked rather than leading to a
divergence.

In combined communicating systems we also define B machines that do not have operations and only contain sets,
constants and invariants. These are included in order to provide contextual information to a system.

P. James et al. / Science of Computer Programming 96 (2014) 315-336 317

The language we use to describe the CSP processes for B machines is as follows:
P:= Stop | e?x!ly - P(x) | P1OP2 | PPy |
| if b then P; else P, end
| P11l P2 | PrallgP2 | P1lllP2 | N(exp)

The process Stop does not engage in any events, it represents deadlock. The process e?x!y — P(x) defines a channel
communication where x represents all data variables on a channel, and y represents values being passed along a channel.
Channel e is referred to as a machine channel as there is a corresponding operation in the controlled B machine with the
signature x <— e(y). Therefore the input of the B operation y corresponds to the output from the CSP, and the output x
of the B operation to the CSP input. Here we have simplified the communication to have one output and one input but
in general there can be any number of inputs and outputs. The external choice, P; O P», is initially prepared to behave
either as Pq or as Py, with the choice being made on occurrence of the first event in the environment. The internal choice,
P11 Py, is similar, however, the choice is made by the process rather than the environment. Another form of choice is
controlled by the value of a boolean expression in an if expression. The synchronous parallel operator, P || P,, executes
P1 and P; concurrently, requiring them to synchronise on all events. The alphabetized parallel operator, P14 g P2, requires
synchronisation only in A N B, allowing independent performance of events outside this set. The interleaving operator,
P1 ||| P2, allows concurrent processes to execute completely independently. Finally, N(exp) is a call to a process where N is
the process name and exp is an expression.

It should be noted that the syntax we present for the purpose of this work only allows communication events between
a CSP process (modelling the controller) and a B machine (which it is controlling). CSP processes cannot communicate
between themselves apart from the possibility of synchronising when communicating with a B machine. (In general CSP|B,
the CSP processes can communicate with each other.)

For reasoning with CSP||B models we require the following notation:

e A system run o (of a CSP||B model) of length n > 0 is a finite sequence
0 =(S0,€0,51,€1,...,€n—1, Sn)

where the s;, i =0...n, are states of the B machine, and the e;, 1 <i <n — 1, are events - either controlled by CSP
and enabled in B when called, or B events. Here we assume that sg is a state after initialisation. Given a system run o,
we can extract its trace of events:

events(o) = {eg, ..., €n—1).

To demonstrate consistency of the combined CSP||B model we must consider every sequence of events in a system run
o that correspond to a single pass through the recursive definition of the CSP processes and verify that the matching
sequence of B operations are called within their preconditions. In [6] we provided a general proof obligation that
characterised this notion of successful termination for sequences of operations. When this obligation is discharged for a
particular CSP||B model this verifies the divergence-freedom of the combined system. In practice the proof obligation
requires the identification of a control loop invariant which is a predicate between the variables of the B model and the
parameters within the CSP processes and also predicates which must hold of the B model. Proof obligations in CSP||B
have also been defined to characterise the condition for deadlock freedom [6]. In this paper we need not concern
ourselves with ensuring deadlock freedom of the combined model since we only use events/operations which could
give rise to a deadlock in the encoding of safety in Section 3.4.
e Given a trace of events tr we define its projection to a given set A: () | A=(); and

e) " (tTA); ecA

~ A:
(e t) 1 A oy

~ ~

3. Modelling railways in CSP||B

Together with railway engineers, we have developed a common view of the information flow in railways. In physical
terms, for our purposes we consider a railway as consisting of (at least) the four different components shown in Fig. 1.

e The Controller selects and releases routes for trains.

e The Interlocking serves as a safety mechanism with regards to the Controller and, in addition, controls and monitors the
Track equipment.

e The Track equipment consists of elements such as signals, points, and track circuits. Signals can show the aspects green
or red; points can be in normal position (leading trains straight ahead) or in reverse position (leading trains to a different
line); and track circuits detect if there is a train on a track.

e Finally, Trains have a driver who determines their behaviour.

318 P. James et al. / Science of Computer Programming 96 (2014) 315-336

‘ Controller ‘
Route request, { ‘ Request response,

Route release Release response

‘ Interlocking ‘

Signal and

point settings Track occupation

Signal aspect Current movement

Trains

Fig. 1. Information flow.

m— 051

— / BC(300m) BD(?OOm)\
1 12
. ese P101 o (0512 P102

ENTRY AA(200m) AB(50m) AC(300m) AD(200m) AE(50m) AF(500m) Exit
Control table
Route Normal Reverse Clear
R10A P101 AA, AB, AC,AD
R10B P101 AA, AB,BC,BD
R12 P102 AD, AE, AF
R112 P102 BD, AE, AF
Rel tables
P101 Occupied P102 Occupied
R10A AC R12 AF
R10B BC R112 AF

Fig. 2. Station scheme plan.

’—O S16
AK(500m) AL(200m) AM(550m) Exit 1
‘ ’—C‘) S10 ’—C‘) S12 ’—C‘) S14 . P921 ‘ ’—C‘)Sll() ‘

ENTRY AE(200m) AF(550m) AG(200m) AH(550m) AI(200m) AJ(50m) BK(500m) ‘I%L(ZOOm) BM(550m) ‘ Exit 2

Control table Release table

Route Normal Reverse Clear P921 Occupied

R10 AE, AF, AG R14A AK

R12 AG, AH, Al R14B BK

R14A P921 AlLAJ, AK, AL

R14B P921 Al,A],BK,BL

R16 AL, AM

R116 BL, BM

Fig. 3. Single junction scheme plan.

For the purposes of modelling, we make the assumption that track equipment reacts instantly and is free of defects.

The information flow shown in Fig. 1 is as follows: the controller sends a request message to the interlocking to which
the interlocking responds; the interlocking sends signalling information to the trains; and the trains inform the interlocking
about their movements. The interlocking serves as the system’s clock: messages can be exchanged once per cycle.

In this paper, we study two example track plans, one of which is a station illustrated in Fig. 2, the other being a single
junction illustrated in Fig. 3. In both cases, the figures depict the scheme plans for the examples, each comprising of a track
plan, a control table, and release tables. (Scheme plans and the various tables are provided as standard entities by the
railway industry, and it is our task to provide models which faithfully capture the behaviour associated with these.) We
explain our modelling approach here with reference to the station example of Fig. 2. In general, we adhere closely to the
established principles laid out in [11]. The track plan provides the topological information of the station which consists of 8
tracks (e.g., the track AA), three signals (e.g., S10), and two points (e.g., P101). Note that the tracks include entry and exit
tracks on which trains can “appear” and “disappear”. These two kinds of tracks are specially treated during verification.

P. James et al. / Science of Computer Programming 96 (2014) 315-336 319

1 RW_CIRL =
2 Mreroute (request!r?b — RW_CTRL)
3 n
4 Mreroute (release!r?b — RW_CTRL)
5
6 TRAIN_OFF(t) = enter!t?newp — TRAIN_CTRL(t, newp)
7
8 TRAIN_CTRL(t, pos) =
9 pos ¢ EXIT A pos € SIGNALHOMES & nextSignallt?aspect —
10 if aspect == green
11 then
12 move!t.pos?newp — TRAIN_CTRL(t, newp)
13 mn
14 stay!t.pos — TRAIN_CTRL(t, pos)
15 else
16 stay!t.pos — TRAIN_CTRL(t, pos)
17 mn
18 movelt.pos?newp — Stop
19 m]
20 pos ¢ EXIT A pos ¢ SIGNALHOMES &
21 move!t.pos?newp — TRAIN_CTRL(t, newp)
22 m
23 stay't.pos — TRAIN_CTRL(t, pos)
24 o...
25
26 | ALL_TRAINS =|||;ctraiv TRAIN_OFF(t)
27
28 | CTRL = RW_CTRL ||| ALL_TRAINS

Fig. 4. CSP control processes for Controller and Trains.

An interlocking system gathers train locations, and sends out commands to control signal aspects and point positions.
The control table determines how the station interlocking system sets signals and points. For each route, there is one row
describing the condition under which that route can be granted, and hence the corresponding signal can be set to show
proceed. For example, there are two rows corresponding to signal S10: one for the main line (Route R10A) and one for the
side line (Route R10B); signal S10 for the main line can only show proceed when point P101 is in normal (straight) position
and tracks AA, AB, AC, AD are all clear.

Note that we do not assume that trains are equipped with an Automatic Train Protection system which prevents trains
from moving over a red light; thus overlaps are needed, e.g., the overlap for Route R10A is AD, and hence AD is included in
the clear table.

The interlocking also allocates locks on points to particular route requests to keep them locked in position, and releases
such locks when trains have passed. For example, the setting of Route R10A obtains a lock on point P101, and sets it to
normal. The lock is released after the train has passed the point. The release tables store the relevant track.

In this setting, we consider three safety properties:

1. collision-freedom excludes two trains occupying the same track;

2. run-through says that whenever a train enters a point, the point is set to cater for this; e.g., when a train travels from
track AD to track AE, point P102 is set so that it connects AD and AE (and not BD and AE);

3. no-derailment says that whenever a train occupies a point, the point doesn’t move.

The correct design for the control table and release tables is safety-critical: mistakes can lead to a violation of any of the
three safety properties.

3.1. Modelling short trains

As outlined in [2], CSP||B caters for the double nature of railways by addressing the (control) state and data aspects
separately: the interlocking as the “data-rich” component is modelled as a single, dynamic B machine, the Interlocking
machine. It represents the centralized control logic of a rail node, which reacts to its environment without taking any
initiative. The Interlocking machine offers to perform events in the form of operations to the two active system components:
the controller and the trains, both of which are modelled as CSP processes.

The Trains and Controller processes run independently of each other, on the CSP level expressed with an interleaving
operator - see Fig. 4 (lines 26 and 28). It is an internal decision of the controller which routes are requested to be set or to
be released (lines 2-4). Similarly, it is an internal decision of the train (driver) to stay or to move in front of a green signal
(lines 12-14) or when there is no signal (lines 21-23). If there is a red signal (lines 16-18) then it is an internal decision
of the train (driver) to stay or to overrun the signal onto an overlap but then to stop. This dynamic operation is sometimes
referred to as the driving rules of a train.

320 P. James et al. / Science of Computer Programming 96 (2014) 315-336

1 b <— release(route) =
2 PRE route € ROUTE THEN
3 LET emptyTracks = TRACK \ ran(pos) IN
4 IF
5 [* the signal of the route is green */
6 signalStatus(signal(route)) = greenA
7 [* points locked for the route */
8 currentLocks[route] = lockTable[route] A
9 /* the route is clear */
10 clearTable(route) C emptyTracksA
11 /* no train is in the track preceding the route
12 (i.e. nothing close enough to go through the red light) */
13 homeSignal(signal(route)) € emptyTracks
14 THEN
15 [* signal of route to red */
16 signalStatus(signal(route)) := red||
17 [* release the locks associated with the route */
18 currentLocks := route < currentLocks||
19 |* release is successful */
20 b := yes
21 ELSE
22 b:=no
23 END
24 END
25 END
Fig. 5. Release operation from Interlocking.
Interlocking
Control Tablel | Topology | |Release Tablel

| Context |

Fig. 6. Architecture.

The Interlocking machine captures information about the location of trains on tracks using the function pos : TRAIN —
ALLTRACK. The machine also captures the current information about successor tracks through a dynamic function nextd
which is dependent upon the position of the points. Furthermore, the machine captures information about signal settings
using the function signalStatus and point settings using the sets: normalPoints and reversePoints. Finally, the current locks on
points are modelled using currentLocks. The initial state of the model sets all tracks to being empty, all signals to red, all
points to the normal position and no locks are made on points. This is a safe state. This dynamic state is then updated and
queried, respectively, in the four operations of the Interlocking machine.

Fig. 5 shows the full B code of a typical operation of the Interlocking machine. It describes how a release request from
the controller is processed. The release is granted provided a number of conditions are fulfilled (the signal of the route is
green, line 6, there are points locked for the route, line 8, etc.). In such a case, a number of state changes are made (the
signal of the route is set to red, line 16, etc.) and the controller is notified with a “yes” (line 20). Otherwise, the state does
not change and the controller is notified with a “no”.

Fig. 6 shows the overall architecture of our modelling. The CSP controller CTRL and the Interlocking machine are in-
dependent of any particular scheme plan. They are supported by a Topology, a Control Table, a Release Table, and a Context
machine. These four machines encode the scheme plan and are the parameters in our generic approach. Seen as B machines,
these four supporting machines are stateless (i.e., without behaviour), and provide generic domain definitions.

A typical example from the ControlTable machine which splits up the modelling of a control table into three functions
would be given as follows:

normalTable € ROUTE — P(POINTS) A
reverseTable € ROUTE — P(POINTS) A
clearTable € ROUTE — P(TRACK)

P. James et al. / Science of Computer Programming 96 (2014) 315-336 321

dr df

i —
oy ff
y . v vV N
AA AB AC AD

Fig. 7. A long train.

These three functions capture the data in the relevant columns from the control table. The Release Table is modelled as a
function

releaseTable € TRACK — P(ROUTE x POINTS)

which indicates, for given track t, the route/point pairs (r, p) such that occupancy of track t releases point p on route r.
This information is drawn directly from the release table.

As the CSP||B code is easy to read and moreover short, it is actually possible to discuss and to validate it with railway
engineers. This is especially useful for discussing the algorithms underlying the four operations of the Interlocking machine
which they confirmed to be correct. Indeed, our industrial partners were able to contribute to the development of the
model at the CSP||B level so as to ensure it reflected real-world concerns. They also confirmed our insight of the dual
nature of railways by stating that they actually developed and still use a programming language for interlockings which
offers primitives for manipulating both events and states.

To ensure consistency, the relationship between the Interlocking machine on the one hand and the CTRL process on the
other is captured by an invariant which relates the pos function within the Interlocking machine to the parameters t and pos
of the TRAIN_CTRL process. This invariant is required to hold at each recursive call, and hence the system is divergence-free.

3.2. Modelling long trains

Until now we have relied on the assumption that trains are shorter than track segments. Whilst unrealistic, this assump-
tion allows much smaller models to be devised and, hence, analysed. Here we provide an approach which encompasses
train and track lengths, making no assumptions about trains having to fit on track segments. For example, Fig. 7 depicts a
train spanning the three tracks AA, AB and AC. Specifically, the front of the train sits on track segment AC (ff = AC), and
has a distance df > 0 to the next track segment AD; and the rear of the train sits on track segment AA (rr = AA), and has a
distance dr > 0 to the next track segment AB.

This approach allows fine-grained modelling of the distances that trains travel, as well as the times it takes to do so,
and we have carried out such studies in the context of Timed CSP [12]. However, for the purposes of this paper - that is,
verifying the safety of the rail network - we restrict attention to an untimed model in which state changes reflect the front
or rear of the train either reaching or passing the end-points of track segments. There are thus four variables (ff, rr, df and
dr) which define the state of a train.

There are the following four situations in which a state change occurs, depending on a partitioning of the values of the
distances df and dr. (The track segments named are in reference to Fig. 7.)

(a) df =0 and dr>0. This means that the front of the train ff is at the junction of two track segments (AC and AD) while
the rear of the train rr is wholly within a track segment (AA). In this instance an event moveff.t.ff.ff’ occurs representing
the front of the train moving from track segment AC to track segment AD. The new values of the state variables are
ff' = AD, df’ = length(AD), r’ =rr and dr’ = dr. (Note that this corresponds to track circuit AD changing from “no train
detected” to “train detected”.)

(b) dr > df > 0. This means that the front and rear of the train are each wholly within a track segment (the rear within AA
and the front within AC), but with the front closer to its next track segment than the rear is to its. In this instance the
state changes autonomously (i.e., without any causal event) to that in which the front of the train moves to the end of
its track segment (i.e., the train moves forward a distance df). The new values of the state variables are ff' =ff, df’ =0,
rr’ =rr and dr’ =dr — df.

(c) df >0 and dr =0. This means that the rear of the train is at the junction of two track segments (AA and AB). In this
instance an event moverr.t.rr.rr’ occurs representing the rear of the train t moving from track segment AA to track
segment AB. The new values of the state variables are ff' = ff, df’ =df, rr’ = AB and dr’ = length(AB). (Note that this
corresponds to track circuit AA changing from “train detected” to “no train detected”.)

In the case df = dr =0, we could have instead chosen to model this as internal non-deterministic choice between
events moverr.t.rr.rr’ and moveff.t.ff.ff'. However, as we are dealing with sets of traces, the encoding as presented is
sufficient for safety analysis.

(d) df >dr > 0. This means that the front and rear of the train are each wholly within a track segment (the rear within
AA and the front within AC), but with the rear at least as close to its next track segment as the front is to its. In this
instance the state changes autonomously to that in which the rear of the train moves to the end of its track segment
(i.e., the train moves forward a distance dr). The new values of the state variables are ff' = ff, df’ =df —dr, r’ =rr and
dr' =0.

322 P. James et al. / Science of Computer Programming 96 (2014) 315-336

As a note, in a finer-grained model cases (b) and (d) above - where neither end of the train is on an end-point of a track
segment - would represent states where time elapses, allowing the train to move along a distance d < min(df, dr), updating
the state variables to be ff' =ff, df’ =df —d, rr’ =rr and dr’ =dr —d.

3.3. Signals and overlaps

Unlike in [3], we do not assume here the presence of Automatic Train Protection (ATP) preventing trains from overrun-
ning red signals. Rather, we use the more realistic assumption that trains may overrun a red light but in such instances will
stop on the next track segment.

This being the case, the control table will (be expected to) stipulate that a track section immediately following a signal
(an overlap section) will be protected by the signal preceding the one at the start of the section. As we are modelling “open”
networks (i.e., with entry and exit tracks), our B model will allow a train to enter an entry track only if the entry track and
its overlap track are both clear.

A moveff event will be enabled in the first two situations above, that is if (a) dr > df =0 or (b) dr > df > 0; whereas
a moverr event will be enabled in the latter two situations, that is if (c) df >dr =0, or (d) df > dr > 0. The driving rules
encoded into our model are then as follows:

(i) in front of a red signal, the train may either stay put, or it may overrun by one track and then stop;
(ii) in front of a green signal, the train may either move or it may stay put.

The behaviour of the train will only be dependent on signals in situation (a), and be modelled in CSP as follows.

if aspect == green

then
moveff't ff?ff — TRAIN_CTRL(t, ff’, length(ff'), rr, dr)
-

stay.t — TRAIN_CTRL(t, ff, df , rr, dr)
else (x aspect == red *)

stay.t — TRAIN_CTRL(t, ff, df ,rr,dr)

n

moveff.t.ff.ff — Stop

OOV A WN =

3.4. Encoding safety

We describe here how the three safety properties are encoded in our B machine. Firstly, a collision is encoded as follows.

collision =
SELECT
3ty, tp € TRAIN : t1 # ta A (ran(pos(t1)) Nran(pos(tz2))) \ (EXIT UENTRY) # ()
THEN skip
END;

U WN =

Here collision is detected when two different trains t; and t, occupy the same track segment (different from the EXIT
and ENTRY tracks). This is recognised in the pos function which maps trains to the track segments they occupy; the collision
condition will be enabled when the ranges of the pos functions of the two trains have a nonempty intersection.

Next, run-through is modelled as follows.

runthrough =

SELECT 3t € TRAIN At € dom(pos) A nullTrack € ran(pos(t))
THEN skip

END;

AW N =

Here run-through is detected when a train t occupies nullTrack which is a special track segment introduced in our CSP
model onto which a train is sent when it travels over an incorrectly-set point.
Finally, derailment is modelled as follows.

derailment =

SELECT ran(union(ran(pos))) N homePoints[movedPoints] # (
THEN skip

END;

AW N =

Here derailment is detected when the set of track segments currently occupied by trains includes segments which are
associated with points that have moved while the trains have been on these segments.
In order to mirror these B events on the CSP level, we add a process that enables these events at all times:

1 | ERR = (collision — ERR) O (runthrough — ERR) O (derailment — ERR)

The complete CSP||B models for both case studies can be downloaded from http://www.cs.swan.ac.uk/RAIL/Models/CSPB.

http://www.cs.swan.ac.uk/RAIL/Models/CSPB

P. James et al. / Science of Computer Programming 96 (2014) 315-336 323

4. Finitisation

In the following, we develop a theory of how to reduce the problem of verifying our CSP||B models of scheme plans
for safety (i.e., freedom from collision, derailment, and run-through) to that of the two-train scenario. Given a scheme plan
SP, and an unlimited collection TRAIN of trains with a function length : TRAIN — N that assigns a length to each train,
we write CSP || B(SP, TRAIN) for the instantiation of our generic CSP|B model with SP and TRAIN. Note that in general
CSP || B(SP, TRAIN) is an infinite state system due to the inclusion of train identifiers into events and states. Naturally, in
railway practice there are only finitely many train lengths in use. We call our theory “finitisation”, as it reduces the safety
problem over an infinite state system to a safety problem over a finite state system, namely to CSP || B(SP, TRAIN) where
the set TRAIN contains two elements only.

Finitisation requires scheme plans to fulfil a number of well-formedness conditions as outlined in Section 4.1. For well-
formed scheme plans we establish in Section 4.2 a reduction theorem (Theorem 3) w.r.t. the number of trains involved in
a system run. All these conditions are straightforward to check statically. If we are only interested in the movements of a
finite set of trains in a given system run - say in the movements of two trains which collide in this system run - then we
can define a new system run with “exactly the same movements” for just this selected set of trains. Finitisation works for
well-formed scheme plans as it is possible to simulate the influence that one train can have on other trains by suitable route
request and route release commands. The validity of this finitisation argument for safety is demonstrated in Section 4.3.

4.1. Well-formedness conditions

In our modelling approach, track plans are encoded in the Context and in the Topology machines in B. In these machines,
tracks are collected in a set TRACK with special sets ENTRY, EXIT C TRACK for the entry and exit tracks. Signals are collected
in a set SIGNAL; homeSignal : SIGNAL — TRACK defines the unique track at which a signal is placed; and the connectivity is
given by a relation next C TRACK x TRACK. One can see this structure as a directed graph (TRACK, next) with signals as labels
on the nodes. With this notation, we define the concept of a topological route as a path through this graph, which begins
after a signal and ends either with the track after the next signal or before an exit track.

Definition 1. A topological route is a path R = (t1, ..., t;) € TRACK™, k > 1, in the graph (TRACK, next) such that the following
holds:

e there is a signal s € SIGNAL and a track t € TRACK such that homeSignal(s) =t and (t, t1) € next, and

e either there is a signal s € SIGNAL such that homeSignal(s) = ty,_q and for all 1 <i <k — 2 and s € SIGNAL:
homeSignal(s) # t;;
or there is a track t € EXIT such that (i, t) € next and for all 1 <i <k and s € SIGNAL: homeSignal(s) # t;.

A track t belongs to a topological route R, written as t € R, iff t = t; for some 1 <i < k. TopoRoute denotes the set of all topological
routes of a track plan.

In Fig. 2, the path (AA, AB, AC, AD) is a topological route from the first track after signal S10 to the first track after
signal S12; the path (AD, AE, AF) is a topological route from signal S10 to the track just before the exit track Exit.

When designing a scheme plan, the signalling engineer selects and names some of the topological routes and develops
control and release tables for them, i.e., there is a set ROUTE of route names and an injective map topo : ROUTE — TopoRoute
which assigns a topological route to each route name.

Definition 2. A scheme plan is well-formed if the following conditions hold:

1. (Release-Table condition) Locks of a route can only be released by a train movement on that route:
Vr € ROUTE, p € POINT, t € TRACK: (r, p) € releaseTable(t) = t € topo(r)

2. (Clear-Table condition) The clear table of a route contains at least the tracks of this route:
Vr € ROUTE: {t |t € topo(r)} C clearTable(r)

3. (Normal/Reverse-Table condition) Every point on a route is in either the normal table or the reverse table of that route
(and not both):

Vr € ROUTE: { p € POINT | homePoint(p) € topo(r)} C normalTable(r) U reverseTable(r)
A normalTable(r) NreverseTable(r) = @

Here, homePoint(p) depicts the track circuit name of point p.

324 P. James et al. / Science of Computer Programming 96 (2014) 315-336

4. (Route condition) Topologically different routes that share some points are distinguishable by at least one point position
of these shared points:

Vri,12 € ROUTE: 11 # 13 A sharedPoints(ry, 1) # 0 =
(3p € sharedPoints(ry, r2):
(p € reverseTable(r1) A p € normalTable(r2))v

(p € reverseTable(r2) A p € normalTable(ry)))

Here, sharedPoints(r1,r2) depicts the points on both routes r; and ry.

The above conditions ensure a minimal consistency between the signalling of routes in the control and release tables on
the one hand, and their topological extent as defined by the railway topology on the other hand. As demonstrated by the
following example, however, this consistency is not enough to ensure safety.

Example 1. Consider the following changes to the control table of the scheme plan shown in Fig. 2: for route R10A set
point P101 to be “reverse” rather than “normal”, for route R10B set point P101 to be “normal” rather than “reverse”. In
this changed setting all four conditions are fulfilled. The changed scheme plan however is not safe as trains can collide on
track BC: Let there be no train in the beginning. Then route R10A can be set, and a train can travel from Entry over AA
and AB to BC and stay on track BC. As BC is not in the clear part of route R10A, and there are no trains on the track
named in the clear part of R10A, route R10A can be set again, and another train can travel along the same way. This second
train will collide with the first one on track BC.

4.2. Areduction theory

We start the development of our reduction theory with a simple observation on our CSP||B models. If a signal shows
green in a state of a system run, then there exists a uniquely determined route for which in the past a route request must
have been granted by the interlocking.

Theorem 1. Let o be a system run of CSP || B(SP, TRAIN) for a scheme plan SP and a set of trains TRAIN. Then the following holds for
all signals sig € SIGNAL: prior to a state in which sig shows green, there is a uniquely determined event request.r.yes, r € ROUTE, in o
that caused the signal to become green. We sometimes speak of the uniquely determined route r that has been granted.

Proof. By definition of the B machine Interlocking, a signal is set to green only by the event request (when a route is
successfully requested). Conversely, a signal is set to red only by the events moveff and release (when a train passes a signal
and when a route is released successfully).

Let S,, n >0, be a state of o in which sig is green. Then, prior to Sp, there must have been a last successful request
to one of the routes r with signal(r) = s (in So, all signals show red). Moreover, after this request no train can have passed
sig and there cannot have been a successful attempt to release r. Thus, the system run o up to state S, has the following
form:

S0,€0,S1,...,Sk_1,request.r.yes, Sk, €k, «eveuueennon.. ,€en, Sn

ej # moveff .id.tsig.Nsig,

e; # release.r.yes
where signalStatusg, (sig) = green (i.e., the signal sig in the final state S, is green), signalHome(sig) = tsig, (tsig, Nsig) € NeXt,
and id is a train identifier. Furthermore, any event between e, and e, inclusively cannot be request.r’.yes for a route
1’ € ROUTE with signal(r’) = sig. This is the case, as one condition in request.r’.yes at state S; (where k < i < n) requires
signalStatuss, (sig) = red. Hence, no other route which shares this signal is set from Sy to Sp. O

In the following we show that given a set X of trains which do not cause collisions, derailments or run-throughs (in a
precisely defined sense): for every system run o, there exists a system run ¢’ involving only the trains not in X in which
these trains move as dictated by o. In particular: if trains collide in o then they collide in ¢’; if a train derails in o, then
it derails in ¢’; and if a train has a run-through in o, then it has a run-through in o”’.

We obtain ¢’ constructively by defining a replacement function on events. To this end, we first identify those events
which are related to the trains in the set X:

Definition 3. Given a set X of train identifiers, we define the events of X (as introduced in our model) as
E(X) = {enter.b|be X} U
{exit.b |b e X} U
{nextSignal.b |b € X} U
{moveff.b.cp.np | b € X A cp,np € ALLTRACK} U
{moverr.b.cp.np | b € X A cp,np € ALLTRACK}

P. James et al. / Science of Computer Programming 96 (2014) 315-336 325

The next step is to define the replacement function replacey for a given set of trains X. This function is dependent on
the current state S as well as the event e being replaced:

e e¢ E(X)
release.r.yes e = moveff.b.cp.np A
Js € SIGNAL: homeSignal(s) = cp A
replacey (S, e) = signalStatus(s) = green A
signal(r) =s A
currentLockss (r) = lockTable(r)
idle otherwise

In the context of a system run, Theorem 1 ensures that this function is well-defined, as it guarantees the uniqueness of the
route r to be released in the second clause.

In order to cater for this model transformation, which introduced the new event idle, we add the following CSP process
IDLE in interleaving to our CSP controller:

1 | IDLE = (idle — IDLE)

This process is only needed for the justification of our model transformations, however, left out in proof practice without
losing the correctness of the argument.

Removing the trains in the set X from a system run also effects the states of the B machine. For example, one component
of a B machine state S is the map poss : TRAIN — ALLTRACK™, which stores for each train the sequence of tracks it occupies.
If we now remove the trains in X, we would hope that for the corresponding state T the following relation holds: pos; =
poss \ X x ALLTRACK™. In general, this correspondence between states is not only a projection on the remaining trains. We
define:

Definition 4. Let S and T be states of the B machine of CSP || B(SP, TRAINS), let X C TRAINS be a set of trains. State T is in
X-correspondence to state S, written T <y S, iff the following nine conditions are fulfilled:

post = poss \ X x ALLTRACK™ (1)
nextdr = nextds (2)
signalStatust = signalStatuss (3)
normalPointst = normalPointss (4)
reversePointst = reversePointss (5)
movedPointst = movedPointss (6)
(currentLockst [{r}] = currentLockss[{r}] Vv currentLockst [{r}] =) for allr € ROUTE (7)
Vs € SIGNAL: if signalStatuss(s) = green then

I'r € ROUTE: signal(r) = s A currentLockss (r) = lockTable(r) A currentLockst (r) = lockTable(r) (8)
Vb € X, Vt € posg(b), Vr € ROUTE: ift € topo(r) then currentLockst (r) = (9)

Condition (1) is as expected: the trains in the set X have been removed. Conditions (2) to (6) state that point positions
and signal aspects are identical. Condition (7) states that the run without the trains in the set X:

e either has the same locks for a route - reflecting the fact that when a route is set, the locks are the same regardless of
the set of trains involved;

e or no locks at all - reflecting the idea that if in S there is a train travelling on a route r, and this train is removed, then
we release the route resulting in an empty set of locks.

Condition (8) stipulates that if a signal is green, there exists a unique route associated with the signal which is set. Finally,
condition (9) says that the locks of any route that contains a track segment occupied by a train b € X in state S have been
released in state T. It ensure that any route request in S is also possible in T. More specifically:

e if a train b is travelling on a route r and b is removed, then the locks of r must be empty, as we release r at the earliest
convenience; and
e no other route makes use of the freed resources.

326 P. James et al. / Science of Computer Programming 96 (2014) 315-336

We want to establish the following simulation property: given a state S and a state T with T <x S, and an event e that
is enabled in S leading to a state S’, the event replacey (S, e) is enabled in T and leads to a state T’ <x S’. The following
diagram illustrates this situation:

T <x S
replacey (S,e) J, \Le
T/ SX s/

We establish this simulation property in the following lemma.

Lemma 1. Given a scheme plan SP, a set of trains TRAIN, a subset of trains X C TRAIN and a system run
o =(Sp,e1,S1,...,€ek, Sk)

of CSP || B(SP, TRAIN) where trains in X do not cause collision, then there is a well-defined system run
replacey (0') = (To, replacex (So, e1), T1, ..., replacex (Sk—1, ex). Tk)

of the Bmachine of CSP || B(SP, TRAIN \ X) in which T; <x S; for each i.

Proof. The proof is by induction on the length of o. The base case is trivial, and the induction cases are generally unprob-
lematic, with each case (i.e., possible event) demonstrating that replacey(S;—1, e;) is enabled in T;_; and leads to a T; with
T; <Si.

The condition that the trains in X do not cause collision is necessary in the proof step regarding movement of trains
in X when they pass a signal. In the simulation, we replace the move event moveff.x.ff.nextff (where x € X, ff is a track
in front of a signal) with a release.r.yes event (where r is the route of this signal). One of the preconditions of the release
event is that there is no train on the track in front of the signal. When now x is removed, this condition may be false should
there still be another train which was colliding with train x.

Due to the sheer number of cases to consider, the proof is relegated to Appendix A. O

With this result in place, we consider what conditions guarantee that events(replacey (o)) will be a trace of the CSP
controller:

Lemma 2. Given a scheme plan SP, a set of trains TRAIN, a subset of trains X € TRAIN and a system run o of CSP || B(SP, TRAIN), the
trace events(replacey (o)) will be a trace of the CSP controller CTRL(SP, TRAIN \ X).

Proof. Let o be a system run of CSP || B(SP, TRAIN) and let ¢’ =replacey (o). As o is a system run, events(c) is a trace of
CTRL(SP, TRAIN). Recall that

CTRL(SP, TRAIN) = RW(SP) ||| TRAIN_CTRL(TRAIN) ||| ERR ||| IDLE
TRAIN_CTRL(TRAIN) = |||ictramv TRAIN_OFF (i)

By looking at the definitions of the processes RW(_), TRAIN_CTRL(_), ERR and IDLE, we can note that their alphabets are
disjoint; we can thus analyse the situation for the trace events(c’) by projection onto these alphabets.

First note that for the original trace we have that events(o) | E({i}) € traces(TRAIN_OFF(i)) for all i € TRAIN. Here, E({i})
is the set of events associated with train i, see Definition 3, and [is the projection function defined in Section 2. With this
result we obtain

e for each train b € X,
events(o’) | E({b}) = () C traces(TRAIN_OFF (b))
since we replace all events related to b € X; and
e for each train a ¢ X,
events(o’) | E({a}) = events(o) | E({a}) € traces(TRAIN_OFF(a))
since we keep all events related to a ¢ X.

From the definitions of RW(SP), ERROR and IDLE, it follows directly that

e events(a’) | {|request, release|} € traces(RW(SP)) and
e events(o’) [{|collision, derailment, runthrough|} € traces(RW(SP)).

Therefore, events(c’) € CTRL(SP, TRAIN \ X). O

Combining our two lemmas results in the following theorem.

P. James et al. / Science of Computer Programming 96 (2014) 315-336 327

Theorem 2. Given a scheme plan SP, a set of trains TRAIN, a subset of trains X C TRAIN and a system run o of CSP || B(SP, TRAIN)
where trains in X do not cause collision, then replacey (o) is a system run of CSP || B(SP, TRAIN \ X).

Proof. Let o be a system run of CSP | B(SP, TRAIN). By Lemma 1 we know that replacey(c) is a run of the B ma-
chine M of CSP || B(SP, TRAIN \ X), and we especially have events(replacey (o)) € traces(M). By Lemma 2 we know that
replacey (o) € tracesCTRL(SP, TRAIN). Thus, by definition of the semantics of CSP||B, replaceyx(c) is a system run of
CSP || B(SP, TRAIN \ X). O

4.3. Verification for safety

Our verification approach for CSP||B is to use model checking with PrRoB, where we check that in a given model a
specific error event does not happen, i.e., it is never enabled.
Safety in the models with long trains is dependent on the train length involved, which motivates the following definition.

Definition 5. Let ERROR = {collision, derailment, runthrough} be the set of error events of interest, and L C N be a set of
possible train lengths.

1. For n € Nog and e € ERROR, a scheme plan SP is (n, L) e-free iff e is not enabled in any state of any o € CSP ||
B(SP, TRAIN) in which |TRAIN| =n and {length(t) | t € TRAIN} = L.
2. A scheme plan SP is L-safe iff SP is (n, L) e-free for all n € N.y and e € ERROR.

Note that our definition of (n, L) e-free requires that 1 < |L| <n.
We can now turn Theorem 2 into a proof method. The following corollary is the basis of the main theoretical result of
this paper.

Corollary 1. Let L € N be a set of possible train lengths. If a scheme plan SP is

1. (2, L) collision-free forall L' € L, 1 < |L'| <2, and
2. (1, L) derailment-free forall L' € L, |L'| =1, and
3. (1, L) run-through-free forall L’ C L, |L’| =1,

then SP is L-safe.

Proof. Assume that SP is not L-safe. This means there exists n € N.g and err € ERROR such that SP is not (n, L) err-free.
That is, there is a non-empty collection of runs of CSP || B(SP, TRAIN) in which some error is enabled in some state of each
of these runs. A shortest such run will be of the form

o =(So,€1,51,..., €k Sk)

in which
an error e is enabled in Sy, (10)
no error is enabled in So, ..., Sk_1 (11)

Case 1: e = collision.
(10) = 3Jtq1,ty € TRAIN,t € TRACK: te poss, (t1) At € posg, (t2)
= ey is a moveff of t; or tp by (11)
= replacerga, it, 1,) (0) is a run of CSP || B(SP, {t1. t2})
by Theorem 2, as trains in TRAIN \ {t1, t2} do not
cause collision in o
= Tk <TRAIN\{t1,t2) Sk
where Ty is the last state in replacergam it ¢,} (0')
t € post, (t1) At € post, (t2)

collision is enabled in Ty,

14

= SPisnot (2, {length(t), length(tz)}) collision-free

328 P. James et al. / Science of Computer Programming 96 (2014) 315-336

Case2: e =derailment.
(10) = 3t € TRAIN, p € movedPointss,: homePoint(p) € posg, (t)
= ey is arequest.r.yes by (11)
= replacergay iy (0) is a run of CSP || B(SP, {t})
by Theorem 2, as trains in TRAIN \ {t} do not
cause collision in o
= Tk <1RAIN\{t} Sk
where Ty is the last state in replacergam ¢} (0')
= p € movedPointr, A homePoint(p) € posr, (t)
= derailment is enabled in T

= SPisnot (1, {length(t)}) derailment-free

Case 3: e =run-through.
(10) = 3t e TRAIN: nullTrack € posg, (t)

= ey is a moveff of t by (11)

= replacergan () (0) is a run of CSP || B(SP, {t})
by Theorem 2, as trains in TRAIN \ {t} do not
cause collision in o

= T <tRAIN\{t} Sk
where Ty is the last state in replacergam ¢} (0')

= nullTrack € posr, (t)

= run-through is enabled in Ty

= SPis not (1, {length(t)}) run-through-free O

Corollary 1 works with different numbers of trains: two trains are needed in the case of collision, one train is needed
otherwise. In order to be able to check safety for all three properties in one go, we prove the following.

Theorem 3. If a scheme plan SP is (n, L) e-free then SPis (n’, L’) e-free forn’ <nand L’ C L.

Proof. Assume by way of contradiction that SP is not (n’,L’) e-safe. Then there exists a run o € CSP || B(SP, TRAIN'),
}TRAIN/‘ =/, such that e is enabled in some state of o. Then, ¢ is also a run of CSP || B(SP, TRAIN), TRAIN' C TRAIN,
|TRAIN| =n and L’ C L = {length(t) |t € TRAIN}. O

5. Experimental results

In this section we outline various experimental results carried out on our models. We used the ProB tool to check the
validity of the following CTL formula:
AG(not(e(collision) Vv e(runthrough) v e(derailment)))

This formula is false if one of our ERROR events is enabled. In the CTL variant of PROB AG stands for “on all paths it is
globally true”, e(a) stands for the enabledness of the event a.

5.1. Demonstration of errors

In order to demonstrate possible errors in a scheme plan, we provide two counterexamples from the verification of the
Station case study, presented in Fig. 2, where the control table is deliberately changed to contain errors. In these cases,
counterexamples are provided by ProB in terms of traces which contain an event from {collision, derailment, run-through}.

Example 2. In the first experiment, we swap the position of point P101 for routes R10A (to reverse) and R10B (to normal) —
like in Example 1 above. For this, PROB provides the following counterexample:

P. James et al. / Science of Computer Programming 96 (2014) 315-336 329

Plan Train length States ~ Transitions ~ Size Time

Station 40 m, 40 m 9093 88702 186.5 MB 1m22s
40 m, 200 m 8931 78626 182.1 MB 1m20s
200 m, 200 m 8769 78596 181.7 MB 1Tm19s

Junction 40 m, 40 m 64733 896812 612.3 MB 15m13s
40 m, 200 m 64285 897052 6111 MB 15m10s
200 m, 200 m 63837 883000 604.6 MB 15m04 s

Fig. 8. Verification results of the Station and the Single Junction.

Plan States ~ Transitions ~ Size Time
Station 6185 63508 176.8 MB 54.7 s
Junction 51961 751225 606.2 MB 11 m36s

Fig. 9. Verification results without lengths.

(enter.albert. Entry, request.R10A.yes, nextSignal.albert.green,
moveff.albert.Entry.AA, moverr.albert.Entry.AA, moveff.albert.AA.AB,
moveff.albert.AB.BC, moverr.albert.AA.AB, moverr.albert.AB.BC,
enter.bertie.Entry, request.R10A.yes, nextSignal.bertie.green,
moveff.bertie.Entry.AA, moverr.bertie.Entry.AA, moveff .bertie.AA.AB,
moveff.bertie.AB.BC, collision)

which illustrates a collision caused by albert and bertie at BC.

Example 3. In the second experiment, we swap the position of point P102 for routes R12 (to reverse) and R112 (to normal).
For this, PRoOB provides the following counterexample:

(enter.albert.Entry, request.R10A.yes, nextSignal.albert.green,
moveff.albert.Entry.AA, moverr.albert.Entry.AA, moveff.albert.AA.AB,
moveff.albert.AB.AC, moverr.albert.AA.AB, moverr.albert.AB.AC,
request.R12.yes, moveff.albert.AC.AD, moverr.albert.AC.AD,
moveff.albert. AD.nullTrack, run-through)

which illustrates a run-through caused by albert.

5.2. Verification of the case studies

In this section we report on the verification results for safety of the single junction and station case studies. The ex-
periments were carried out using PROB 1.3.6-final [13] to verify the collision, run-through and derailment freedom using
CTL model checking over the CSP||B models. The models are built using our modelling approach as described in Section 3
where train and track lengths are taken into account. Thanks to the finitisation technique developed in Section 4, the CSP||B
model of each case study requires only two trains for the verification of safety. In our example, we assume that train lengths
can be either 40 m (i.e., consisting of two coaches, each being 20 m long) or 200 m (i.e., consisting of ten coaches). To this
end, for each case study, we performed three experiments which cover all possible combinations of train lengths from
{40 m, 200 m}. The experiments were conducted on a PC with a quad-core 3.2 GHz CPU and 8 GB memory. The results are
summarised in Fig. 8 where for each experiment of a train length combination we report the number of states in the state
space, the number of transitions in the state space, the size of used memory and the total running time.

Fig. 9 shows the verification results for the same case studies without modelling lengths. In these experiments, we
consider two trains in the CSP||B models of the Station and the Single Junction case studies. Since train and track lengths
are not included in the CSP||B models, only one experiment is carried out for each case study. These results show that the
sizes of the CSP||B models increase when we take lengths of trains and tracks into account in our modelling approach.

6. Related work

The railway interlocking problem has long been studied by the Formal Methods community, and our work builds upon
prior approaches to the modelling and verification of railways. Prominent studies from the B community include [14,15]
whilst [16,17] are classical contributions from process algebra and [18] uses techniques from Algebraic Specification. On a
lower abstraction layer, [19-22] verify the safety of interlocking programs with logical approaches.

330 P. James et al. / Science of Computer Programming 96 (2014) 315-336

6.1. Modelling comparison

Our modelling is most related to Winter’s approach in CSP [23] and Abrial’s modelling in Event-B [24]. In the following
we briefly discuss their respective approaches and the manner in which we consider our approach to succeed in combining
the successful aspects of these whilst avoiding their perceived deficiencies.

Winter [23] presents a generic, event-based railway model in CSP as well as generic formulations of two safety proper-
ties: CollisionFreedom and NoMovingPoints. Overall, this results in a generic architecture and a natural representation of two
safety properties. Traceability, however, is limited. There are relations in the model which are derived from the control table.
For example, the driving rule “trains stop at a red signal” is distributed over different parts of the model: it is a consequence
of the fact that (1) the event “move to the first track protected by a signal” belongs to a specific synchronisation set and (2)
a red signal does not offer this event. Purely event-based modelling leads to such decentralized control. Consequently, the
model has no interlocking cycle.

Chapter 17 of the book by Abrial [24] gives an excellent detailed description and analysis of the railway domain, deriving
a total of 39 different requirements. The modelling approach is generic, even though no concrete model is proven to be
correct. Traceability in a tower of specifications can be complex for various reasons. For instance, a requirement can be
the consequence of invariants from different levels. The relation between intended properties and the model remains an
informal one. This is in contrast to other approaches (including Winter’s and our own) which directly represent the intended
property in the formal world and then prove that the modelled property is a mathematical consequence of the formal model.
Furthermore, the approach is monolithic: behaviour is not attached to different entities to which they relate.

Winter et al. [7] allows a train to occupy two track segments, which is a concession to the assumption made elsewhere
(including in our previous studies) that a train can only occupy one track segment. However, we noted in [2] that even this
concession is too restrictive to be realistic. It is one of the novelties of our approach here that this assumption is discharged.
The other novelty is the discharging of the assumption that only a very few trains may enter the network. This assumption
is traditionally used to keep the state space of the analyses under control, with tools being stretched to allow the possibility
of ever more trains running through the network. Using our approach, this assumption is no longer required, at least for
safety analysis.

Finally worth noting, Haxthausen et al. [25] take a different approach to modelling arbitrary numbers of trains and
allowing trains occupying an arbitrary number of track segments. In particular, in their approach sensors are incorporated
into the network along with points, signals and track segments; and virtual counters are associated with each sensor which
keep count of the number of trains that pass the sensor. Safety violations are then expressed in terms of these counter
values.

6.2. Verification comparison

The focus of our paper has been on safety verification using model checking in PRoB. Model checking is becoming more
recognised as an industrial technique [26] and therefore it is important to discuss it in the context of scalability. Ferrari
et al. [19] state that model checking large interlocking systems is unfeasible with current state-of-the-art model checkers,
in particular SPIN and NuSMV. However, James et al. [21] demonstrate positive results on the feasibility of the lower level
approach involving program slicing. Also, Cimatti et al. [22] have demonstrated considerable success using NuSMV on in-
dustrial scale problems, though they do not address large interlocking systems but rather the integration of a (moderately
complex) interlocking system with a train spacing system (ERTMS). A detailed comparison with these approaches is not
appropriate since our approach is at a higher level of abstraction. The justification for this higher level of abstraction is that
the industrial partners wish to have feedback on interlocking systems already during the design stage.

7. Conclusion and future work

Through our association with Invensys Rail, we are working towards deriving railway models which are formal and
analysable by current verification technologies, yet are fully faithful; we do not want to hide the engineering understandings
held by our industrial partners in clever abstract encodings. Despite being expressed in the mathematical language of formal
methods, our models must be immediately understandable — and verifiable — by our industrial partners.

This has proven to be a challenge, as we find that the extant approaches to railway modelling have been hindered
in this respect by the framework in which they have been carried out. As explained above, modelling in the railway do-
main involves event-based components as well as state-based components. Using a solely-event-based framework or a
solely-state-based framework succeeds in faithfully representing the relevant components, yet suffers in representing other
components through encodings which — whilst clever feats of abstract modelling — are not easily appreciated by the work-
ing railway engineer.

Beyond the challenge of faithfully modelling railway systems, we have devised abstraction techniques that yield an
effective and efficient verification process based on model checking. In particular, we illustrated this process in terms of
various scenarios.

P. James et al. / Science of Computer Programming 96 (2014) 315-336 331
Acknowledgements

The authors would like to thank S. Chadwick and D. Taylor from Invensys Rail for their support and encouraging feedback.

Appendix A. Proof of Lemma 1

Base case:
It requires to shows that Ty <x Sg. After initialisation, we have
poSx =0
nextdy = staticNext U dynamicNext[POINT x {normal}]
signalStatusy = SIGNAL x {red}
normalPointsy = POINT

reversePointsy =
movedPointsx]
currentLocksy = @

for any X € {Tg, So}. Hence, it is straightforward that To <x So.

Induction step:
Assume that T <x S and Se S’. We have to show that e’ = replacey (e) is enabled in T and T e’ T’ implies that T <x S’.
This is done by considering all possible cases of e (as outlined in the model).

e Case e = moveff.x.cp.np and x ¢ X, then e’ = moveff.x.cp.np.
e’ is enabled in T:

eisenabledin S = x € dom(poss) A
cp = first(poss (x))
= xedom(posy) A by(l)andx ¢ X
cp = first(posr(x)) by (1)and x ¢ X
= ¢’ isenabledin T

T’ < §': Since e and e’ only change pos(x) signalStatus(s) (if homeSignal(s) = cp), and movedPoints, we only show (1), (3)
and (6):

post(x) = (np) " posy(x) by moveff.x.cp.np
= (np) " poss(x) by(1)andx ¢ X
= posg/(x) by moveff.x.cp.np

signalStatust/(s) = red if cp = homeSignal(s)
signalStatuss (s) by moveff.x.cp.np

movedPointsy: = § by moveff.x.cp.np
movedPointss/ (s) by moveff.x.cp.np

e Case e = moveff.x.cp.np, x € X, and cp ¢ ran(homeSignal), then e’ = idle.
e’ is trivially enabled in T.
T’ < S’: Since e and e’ only change pos(x) and movedPoints, we only show (1) and (6):

postr = post by idle
= posg \ X x ALLTRACK™ by (1)
= poss \ {x} x ALLTRACK™ U {x > (np) ™ poss (x) }\
X x ALLTRACK™ by moveff.x.cp.np
= posg (x) \ X x ALLTRACK* since x € X

movedPoints: = (§ by idle
= movedPointss/(s) by moveff.x.cp.np

e Case e = moveff.x.cp.np, x € X, and cp = homeSignal(s), for some s € SIGNAL and statusSignals(s) = red, then e’ = idle.
e’ is trivially enabled in T.

332 P. James et al. / Science of Computer Programming 96 (2014) 315-336

T’ < S': Since e and e’ only change pos(x) and movedPoints, we only show (1) and (6):

posy: = posy by idle
= poss \ X x ALLTRACK™ by (1)
= poss \ {x} x ALLTRACK™ U {x — (np) ™ poss(x) }\
X x ALLTRACK™ by moveff.x.cp.np
= posg (x) \ X x ALLTRACK™ since x € X

movedPoints = (§ by idle
movedPointss/ (s) by moveff.x.cp.np

e Case e = moveff.x.cp.np, x € X, and cp = homeSignal(s), for some s € SIGNAL such that signalStatuss(s) = green, then
e’ = release.r.yes where r is uniquely determined by (8).
e’ is enabled in T since:

signalStatusy (s) = signalStatuss(s) by (3)
= green
currentLockst (r) = lockTable(r) by (8)
homeSignal(s) € emtpyTracksy
as (1) and x € X (no collision)
imply only x occupies homeSignal(s)

T’ < S’: Since e and e’ only change pos(x) signalStatus(s), and movedPoints, we only show (1), (3) and (6):

postr = posy by release.r.yes
= posg \ X x ALLTRACK* by (1)
= poss \ {x} x ALLTRACK™ U {x > (np) ™ poss(x) }\
X x ALLTRACK™ by moveff.x.cp.np
= pos¢ (x) \ X x ALLTRACK™ since x € X

signalStatusy:(s) = red = signaiStatuss (s) by moveff.x.cp.np

movedPoints = (J by release.r.yes
movedPointss/ (s) by moveff.x.cp.np

e Case e = moverr.x.cp.np and x ¢ X, then e’ = moverr.x.cp.np.
e’ is enabled in T:

eisenabledin S = x € dom(posg) A
cp = last(poss (x))
= xedom(posy) A by(l)andx ¢ X
cp = last(posp(x)) by (1)andx ¢ X
= ¢’ isenabledin T

T’ < S’: Since e and e’ only change pos(x), movedPoints and currentLocks, we only show (1), (6) and (7)

posy/(x) = front(posy(x)) by moverr.x.cp.np
= front(poss(x)) by(1)andx ¢ X
= poss (x) by moverr.x.cp.np

movedPoints: =) by moverr.x.cp.np

movedPointss/(s) by moverr.x.cp.np

currentLockst = currentLockst \ releaseTable(np)
by moverr.x.cp.np
= currentLockss \ releaseTable(np) or
@\ releaseTable(np)
= currentLockss or (

e Case e = moverr.x.cp.np and x € X, then e’ = idle.
e’ is trivially enabled in T.

P. James et al. / Science of Computer Programming 96 (2014) 315-336 333
T’ < §': Since e and e’ only change pos(x), movedPoints and currentLocks, we only show (1), (6) and (7):

postr = posy by idle
= poss \ X x ALLTRACK™ by (1)
= poss \ {x} x ALLTRACK™ U {x > front(poss (x)) }\
X x ALLTRACK™ by moverr.x.cp.np
= posg \ X x ALLTRACK™ sincex € X

movedPoints = (§ by idle
movedPointss/(s) by moverr.x.cp.np

For (7), we have:

currentLockst: = currentLockst
by idle

currentLockss: = currentLockss \ releaseTable(np)
by idle

For any (r, p) € releaseTable(np), we have that np € topo(r) by assumption (1). Furthermore, np € posg(x), by (9), we have
that currentLockst (r) = @, hence currentLocksy: (r) = .
The event of this case moves the rear of a train in X, hence, no signal changes from red to green, then (8) follows
immediate; and it is not moved into a new route, then, (9) holds for S’ and T'.

e Case e =request.r.yes, then e’ = request.r.yes.
e’ is enabled in T:

eisenabledin S
= clearTable(r) C emptyTrackss A
signalStatuss (signal(r)) = red A
normalTable(r) € normalPointss U unlockedPointss A
reverseTable(r) C reversePointss U unlockedPointss
= clearTable(r) C emptyTrackst A
as (1) implies emptyTrackss € emptyTrackst
signalStatusy (signal(r)) =red A by (3)
normalTable(r) € normalPointst U unlockedPointst A
by (4) and (7)
reverseTable(r) C reversePointst U unlockedPointst
by (5) and (7)
= e’ isenabledin T

T’ < S’: Since e and e’ only change signalStatus(signal(r)), normalPoints, reversePoints, movedPoints, and currentLocks(r),
we only show (3), (4), (5), (6), (7), (8):

signalStatusy/ (signal(r)) = green = signalStatusg (signal(r))
by request.r.yes

normalPointsy: = normalPointsy U normalTable[{r}] \ reverseTable[{r}]
by request.r.yes
= normalPointss U normalTable[{r}] \ reverseTable[{r}]
by (4)
= normalPointss: by request.r.yes

reversePointsy = reversePointsy U reverseTable[{r}] \ normalTable[{r}]
by request.r.yes
= reversePointss U reverseTable[{r}] \ normalTable[{r}]
by (4)
= reversePointss: by request.r.yes

334 P. James et al. / Science of Computer Programming 96 (2014) 315-336

movedPoints: = (normalPointst \ normalPoints7) U
(reversePointst \ reversePointst)
by request.r.yes
= (normalPointss \ normalPointss/) U
by (4) and above
(reversePointss \ reversePointsg)
by (4) and above
= movedPointss; by request.r.yes

currentLocksy:[{r}] = currentLockst [{r}] U lockTable[{r}]
by request.r.yes
= lockTable[{r}]
since r locks at most lockTable[{r}]

For (8), the existence is immediate by r. The uniqueness follows from assumptions (3) and (4) that it is not possible to
have 2 routes sharing signals since they must share points and the locks on these points must be different.
For (9), any route r’ such that t € topo(r’) cannot be requested in S and T since assumption (2) and the fact that there
is a train on its topology. Hence, 1’ #, i.e., we do not change the locks by r’ in S’.

e Case e =enter.x.t and x ¢ X, then e’ = enter.x.t.
¢’ is enabled in T:

eisenabledin S = x ¢ dom(poss)A
t € ENTRY A
nextds(t) € emptyTracksg
= x ¢ dom(post) A by (1)
t € ENTRY A
nextdr (t) € emptyTracksy by (1) and (2)
= ¢’ isenabledin T

T’ < S’: Since e and e’ only change pos and movedPoints, we only show (1) and (7):

posy: = posy U {x— (t)} by enter
= poss \ X x ALLTRACK™ U {x > (t)} by (1)
= poss U {x+> (t)} \ X x ALLTRACK™ asx ¢ X
= posg \ X x ALLTRACK™ by enter

movedPoints = () by enter
= movedPointss; by enter

e Case e =enter.x.t and x € X, then e’ =idle.
¢’ is obviously enabled in T.
T’ < S': Since e and e’ only change pos and movedPoints, we only show (1) and (7):

postr = posy by idle
= posg \ X x ALLTRACK™ by (1)
= poss U {x+> (t)} \ X x ALLTRACK™ asxe€ X
= posg \ X x ALLTRACK™ Dby enter

movedPoints = (§ by idle
movedPointsg: by enter

e Case e =exit.x.t and x ¢ X, then e’ =exit.x.t.
e’ is enabled in T:
eisenabledin S = posg(x) = (t)A
t € EXIT
= post(x) = (t) A by (1)andx ¢ X
te EXIT
= e’isenabledin T

T’ < S’: Since e and e’ only change pos and movedPoints, we only show (1) and (7):

posy: = posy \ {x+> (t)} by exit
= poss \ X x ALLTRACK™ \ {x— (t)} by (1)
= poss \ {x > (t)} \ X x ALLTRACK™ asx ¢ X
= posg \ X x ALLTRACK™ Dby exit

P. James et al. / Science of Computer Programming 96 (2014) 315-336 335

movedPointsy: = by exit
movedPointss: by exit

e Case e =exit.x.t and x € X, then e’ =idle.
e’ is obviously enabled in T.
T’ < S’: Since e and e’ only change pos and movedPoints, we only show (1) and (7):

postr = posy by idle
= posg \ X x ALLTRACK™ by (1)
= poss \ {x > ()} \ X x ALLTRACK* asx e X
= poss \ X x ALLTRACK™ by exit

movedPoints = () by idle
= movedPointss: by exit

e Case e =idle, then e’ = idle. The proof is trivial since e and e’ only change movedPoint and movedPointsy =
movedPointss = (.

e Case e = nextSignal .x and x ¢ X, then e’ = nextSignal.x.
e’ is enabled in T:

eisenabledin S = first(poss(x)) = ran(homeSignal(s))
= first(post (x)) = ran(homeSignal(s))
by (1)and x ¢ X
= ¢’isenabledin T

T’ < §’: The proof is trivial since e and e’ only change movedPoint and movedPointst = movedPointss: = @.
Case e = nextSignal.x and x € X, then e’ =idle.

e’ is trivially enabled in T.

T’ <x S’: The proof is trivial since e and e’ only change movedPoint and movedPointst: = movedPointss = ().
Case e = release.r.yes, then e’ = release.r.yes.

e’ is enabled in T:

e is enabled in S
= signalStatuss (signal(r)) = green A
currentLockss [{r}] = lockTable[{r}] A
homeSignal(signal(r)) € emptyTrackss
= signalStatusy (signal(r)) = green A
by (3)
currentLockst [{r}] = lockTable[{r}] A
by (8)
homeSignal(signal(r)) € emptyTracksy
as (1) implies that emptyTrackss € emptyTrackst
= e’ isenabledin T

T’ < S’: Since e and e’ only change signalStatus(signal(r)), movedPoints, and currentLocks(r), we only show (3), (6), (7):

signalStatusy. (signal(r)) = red by release.r.yes
signalStatus (signal(r)) by release.r.yes

movedPointsy: = (} by release.r.yes
movedPointss: by release.r.yes

currentLocksy:[{r}] = currentLockst [{r}] \ lockTable[{r}]
by release.r.yes
= since r locks at most lockTable[{r}]

References

[1] R. Jacquart (Ed.), IFIP 18th World Computer Congress, Topical Sessions, Kluwer, 2004.

[2] F. Moller, H.N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, Railway modelling in CSP|/B: the double junction case study, Electron. Commun.
EASST 53 (2012), 15 pages.

[3] F. Moller, H.N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, Defining and model checking abstractions of complex railway models using CSP||B,
in: Proceedings of HVC'12: Eighth Haifa Verification Conference, in: Lecture Notes in Computer Science, vol. 7857, Springer, 2012, pp. 193-208.

[4] F. Moller, H.N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, Using ProB and CSP||B for railway modelling, in: Proceedings of IFM'12 and ABZ 2012
Posters and Tool Demos Session, 2012, pp. 31-35.

http://refhub.elsevier.com/S0167-6423(14)00169-5/bib746F7069633131s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6E72737431325F45415353543533s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6E72737431325F45415353543533s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6E72737431325F68766332303132s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6E72737431325F68766332303132s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6E72737431325F49464D3132506F7374657273s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6E72737431325F49464D3132506F7374657273s1

336 P. James et al. / Science of Computer Programming 96 (2014) 315-336

[5] E. Moller, H.N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, Combining event-based and state-based modelling for railway verification, Tech. rep.
CS-12-02, University of Surrey, 2012.
[6] S. Schneider, H. Treharne, CSP theorems for communicating B machines, Form. Asp. Comput. 17 (4) (2005) 390-422.
[7] K. Winter, N. Robinson, Modelling large railway interlockings and model checking small ones, in: Proceedings of the 26th Australasian Computer
Science Conference, vol. 16, Australian Computer Society, Inc., 2003, pp. 309-316.
[8] J.-R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge University Press, 1996.
[9] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[10] C.C. Morgan, Of wp and CSP, in: Beauty Is Our Business: A Birthday Salute to Edsger]. Dijkstra, Springer, 1990, pp. 319-326.
[11] O.-S. Nock, Railway Signalling, IRSE Press, 1980.
[12] Y. Isobe, F. Moller, H.N. Nguyen, M. Roggenbach, Safety and line capacity in railways - an approach in Timed CSP, in: [FM'12: Ninth International
Conference on Integrated Formal Methods, in: Lecture Notes in Computer Science, vol. 7321, Springer, 2012, pp. 54-68.
[13] ProB 1.3.5 betal5, http://www.stups.uni-duesseldorf.de/ProB, accessed: 23/07/2012.
[14] M. Leuschel,]. Falampin, F. Fritz, D. Plagge, Automated property verification for large scale B models with ProB, Form. Asp. Comput. 23 (6) (2011)
683-709.
[15] D. Sabatier, L. Burdy, A. Requet,]J. Guéry, Formal proofs for the NYCT line 7 (flushing) modernization project, in: ABZ, 2012, pp. 369-372.
[16] A. Simpson, J. Woodcock,]. Davies, The mechanical verification of solid-state interlocking geographic data, in: Formal Methods Pacific '97, Springer,
1997, pp. 223-243.
[17] M. Morley, Safety in railway signalling data: a behavioural analysis, in: 6th International Workshop on HOLTPA, Springer, 1993, pp. 464-474.
[18] A.E. Haxthausen,]. Peleska, Formal development and verification of a distributed railway control system, IEEE Trans. Softw. Eng. 26 (8) (2000) 687-701.
[19] A. Ferrari, G. Magnani, D. Grasso, A. Fantechi, Model checking interlocking control tables, in: FORMS/FORMAT 2010, 2011, pp. 107-115.
[20] K. Kanso, F. Moller, A. Setzer, Automated verification of signalling principles in railway interlockings, Electron. Notes Theor. Comput. Sci. 250 (2009)
19-31.
[21] P. James, M. Roggenbach, Automatically verifying railway interlockings using SAT-based model checking, Electron. Commun. EASST 35 (2010) 17.
[22] A. Cimatti, R. Corvino, A. Lazzaro, I. Narasamdya, T. Rizzo, M. Roveri, A. Sanseviero, A. Tchaltsev, Formal verification and validation of ERTMS industrial
railway train spacing system, in: CAV, 2012, pp. 378-393.
[23] K. Winter, Model checking railway interlocking systems, Aust. Comput. Sci. Commun. 24 (1) (2014).
[24]].-R. Abrial, Modeling in Event-B, Cambridge University Press, 2010.
[25] A. Haxthausen,]. Peleska, S. Kinder, A formal approach for the construction and verification of railway control systems, Form. Asp. Comput. 23 (2)
(2011) 191-219.
[26] A. Fantechi, S. Gnesi, On the adoption of model checking in safety-related software industry, Comput. Saf. Reliab. Secur. (2011) 383-396.

http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6E72737431325F6D696E69616C766579s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6E72737431325F6D696E69616C766579s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib63737062s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib77696E746572323030336D6F64656C6C696E67s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib77696E746572323030336D6F64656C6C696E67s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib61627269616Cs1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib686F6172653835s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6F723930s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib4E6F636Bs1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib49736F62654D4E523132s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib49736F62654D4E523132s1
http://www.stups.uni-duesseldorf.de/ProB
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6C6575736368656C3131s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6C6575736368656C3131s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib44424C503A636F6E662F61736D2F53616261746965724252473132s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib73696D70736F6E3937s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib73696D70736F6E3937s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6D6F726C65793933s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6861787468617573656E3030s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib66657272617269323031316D6F64656Cs1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6B616E736Fs1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6B616E736Fs1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6A616D6573s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib44424C503A636F6E662F6361762F43696D61747469434C4E525253543132s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib44424C503A636F6E662F6361762F43696D61747469434C4E525253543132s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib77696E7465723032s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib61627269616C3130s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6861787468617573656E3131s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib6861787468617573656E3131s1
http://refhub.elsevier.com/S0167-6423(14)00169-5/bib66616E74656368693230313161646F7074696F6Es1

	On modelling and verifying railway interlockings: Tracking train lengths
	1 Introduction
	2 Background to CSP||B
	3 Modelling railways in CSP||B
	3.1 Modelling short trains
	3.2 Modelling long trains
	3.3 Signals and overlaps
	3.4 Encoding safety

	4 Finitisation
	4.1 Well-formedness conditions
	4.2 A reduction theory
	4.3 Veriﬁcation for safety

	5 Experimental results
	5.1 Demonstration of errors
	5.2 Veriﬁcation of the case studies

	6 Related work
	6.1 Modelling comparison
	6.2 Veriﬁcation comparison

	7 Conclusion and future work
	Acknowledgements
	Appendix A Proof of Lemma 1
	References

