OnTrack: An Open Tooling Environment
for Railway Verification

Phillip James®, Matthew Trumble?*,
Helen Treharne?, Markus Roggenbach', and Steve Schneider?

! Swansea University, UK
2 University of Surrey, UK

Abstract. OnTrack automates workflows for railway verification, start-
ing with graphical scheme plans and finishing with automatically gener-
ated formal models set up for verification. OnTrack is grounded on an
established domain specification language (DSL) and is generic in the
formal specification language used. Using a DSL allows the formulation
of abstractions that work for verification in several formal specification
languages. Here, we demonstrate the workflow using CSP||B and suggest
how to extend the tool with further formal specification languages.

1 Introduction

It is becoming common industrial practice to utilize Domain Specific Languages
(DSLs) for designing systems [I0]. Such DSLs offer constructs native to the
specific application area. Formal methods often fail to be easily accessible for
engineers, but designs formulated in DSLs are open for systematic and, possi-
bly, automated translation into formal models for verification. DSLs also allow
abstractions to be formulated at the domain level.

Considering the railway industry, defining graphical descriptions is the de
facto method of designing railway networks. This enables an engineer to visually
represent the tracks and signals etc., within a railway network. This paper de-
scribes OnTrackE, an open tool environment allowing graphical descriptions to
be captured and supported by formal verification. Our work is inspired by the
SafeCap toolset [5] which is a graphical editor tailored towards Event-B analysis.
In OnTrack, we emphasise the use of a DSL and decoupling this DSL from the
verification method. The novelty of this is that we define abstractions on the DSL
in order to yield an optimised description prior to formal analysis. Importantly,
these abstractions allow benefits for verification in different formal languages.
Our graphical editor can be used as a basis for generating different formal spec-
ifications in different languages. Such automated generation eliminates errors
introduced when hand-coding formal specifications, improving for instance, the
hand-coded specifications in [6I8[9]. Finally, OnTrack is designed for the railway
domain, but the clear separation of an editor with support for abstractions from
the chosen formal language is a principle more widely applicable.

* The author was funded by an EPSRC vacation bursary, Summer 2012.
! OnTrack available for download from http://www.csp-b.org

G. Brat, N. Rungta, and A. Venet (Eds.): NFM 2013, LNCS 7871, pp. 435-f40] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.csp-b.org

436 P. James et al.

2 Workflow

Figure [Ml shows the workflow that we employ in OnTrack. Initially, a user draws
a Track Plan using the graphical front end. Then the first transformation, Gen-
erate Tables leads to a Scheme Plan, which is a track plan and its associated
control tables. Control tables contain information about when routes can be
granted, see [9] for details. Track plans and scheme plans are models formu-
lated relative to our railway DSL meta-model, see Section Bl A scheme plan is
the basis for subsequent workflows that support its verification. Scheme plans
can be captured as formal specifications. This is achieved following two trans-
formations: (1) a Represent transformation translates a Scheme Plan into an
equivalent Formal Scheme Plan over the meta-model of the formal specification
language (FSL) - this is the core transformation within the toolset; (2) various
Generate for Verification transformations turn a Formal Scheme Plan into a
Formal Specification Text ready for verification using external tools. These Gen-
erate for Verification transformations can enrich the models appropriately for
verification. These transformations are validated via manual review.

Abstract Replrﬁent N m Generate lor \RI r'rﬁcation) ﬂb.St_F EiCF
| Scheme Plan Formal Specification
L Scheme Plan N
Abstract Abstract
{a_D5L) {a_FSL)
Genermte » -_—]
Track Tahleq‘__ Scheme Represent & Formal Generate for Verification Concrete
Plan “| Plan “| Scheme Plan “| specification
DSL Meta-Model FSL Meta-Model Text

Fig. 1. OnTrack workflow

The horizontal workflow, described above, provides a validated transformation
that yields a formal specification text that faithfully represents a scheme plan. In
addition to this workflow, we are interested in abstractions to ease verification.
Moller et al. [8] identify two abstractions: representing topological insights from
the domain and reduction theorems over the language semantics. In OnTrack
we define the topological abstractions with respect to the DSL, thus they are
decoupled from the FSL. As any abstraction aps; w.r.t the DSL induces a
corresponding abstraction apgy over specifications, it is possible to share them
between different formal methods.

3 The OnTrack Editor

OnTrack implements the workflow from Section 2lin a typical EMF/GMF /Ep-
silon architecture [3I7]: a graphical editor realised in GMF is the front end for

OnTrack: An Open Tooling Environment for Railway Verification 437

the user. As a basis for our tool, we have defined a modified version of the DSL
developed by Bjgrner [I]. The concepts of such a DSL can be easily captured
within an ECORE meta-model which underlies our toolset. A small excerpt of
topological concepts within our meta-model is given in Figure

RailDiagram

hasSignals

‘ 1

hasConnectors

placedAts

Fig.2. Static

Bjgrner’s DSL

concepts

from

A Railway Diagram is built from Units,
Connectors and Signals. Units come in two
forms: Linear representing straight tracks,
or Point representing a splitting track. All
Unit(s) are attached together via Connec-
tor(s). Finally, Signals can be placed on Lin-
ear units and at Connectors.

Implementing a GMF front-end for this
meta-model involves selecting the concepts of
the meta-model that should become graphi-
cal constructs within the editor and assign-
ing graphical images to them. Figure B] shows
the OnTrack editor that consists of a drawing
canvas and a palette. Graphical elements from
the palette can be positioned onto the draw-

ing canvas. Within the editor, the Epsilon Wizard Language (EWL) for model
transformations has been used to implement calls to the various scripts realizing
different transformations. The first EWL wizard, Generate Tables, automatically
computes a control table for a track plan. We omit details of this transformation
and focus instead on the Abstraction, Represent and Generate for Verification

transformations.
@ *doubleJunction.bjoernercomplete_diagram 5t
-

1

-
1 — — 1 — 1

Py o i

Core Property

e

Placed At Connector

Placed On Linear

Fig. 3. A screenshot of “OnTrack” modelling a station

438 P. James et al.

Listing 1.1. ETL rule for abstract model transformation

rule abs transform rd: Input!RailDiagram to rd2 : Target!RailDiagram {
rd.computeAbstractions();
for(ut:Unit in rd.hasUnits){
if(not (toDelete.contains(ut))){
if(consToBeMapped.contains(ut.hasC1)) {
ut.hasCl = ut.hasCl.getMapping(); }
if(consToBeMapped.contains(ut.hasC2)) {
ut.hasC2 = ut.hasC2.getMapping(); }
rd2.hasUnits.add(ut); } }
//Omitted code: similar computation with connectors and signals//
rd2.computeTables(); }

© W N e U oA W N e

=
S)

-
=

4 Automatic DSL Abstractions

We have implemented a particular apgy abstraction based on the simplifying
scheme plan abstraction by Moller et al. [8]. Various sequences of units are
“collapsed” into single units. This abstraction has been shown correct, and to
improve the feasibility of verification [8]. The abstraction is implemented us-
ing the Epsilon Transformation Language (ETL) [7] that is designed for model
transformations. Listing [[LT] gives an excerpt of our transformation. The algo-
rithm uses the following list structures: toDelete: storing units to be removed
and consToBeMapped: storing which connectors require renaming.

The abs rule performs as follows: line 1 states that the rule translates the
given rail diagram rd to another rd2. The second line simply calls an operation
computeAbstraction() on rd to compute which units can be collapsed and to
populate the lists with appropriate values. For example, considering Figure [3],
toDelete = [AA, AB, BA, BB, AD, AE, AH]. Next, the algorithm will consider
every unit ut within rd (line 3). If ut is not in the list toDelete (line 4), then
the algorithm will perform analysis on the connectors of ut. If connector one
of ut is within the set of connectors requiring renaming (line 5), then the first
connector of ut is renamed using a call to the operation getMapping() (line 6).
Lines 7 to 8 of the algorithm perform these steps for connector two of ut. After
this computation, the modified unit ut is added as an element to rd2 (line 9).
The algorithm continues in a similar manner, computing which connectors and
signals should be added to rd2. Finally, an operation computeTables is called
to compute a new control table for rd2. The result of this translation is that
units AA, AB, BA, BB, AD, AE and AH are removed from the track plan in Figure 3l

5 Automatic Generation of CSP||B Models

Here we describe the implementation of the Represent and Generate for Ver-
ification transformations for CSP||B formal specifications. The use of CSP||B
specifications for railway modelling is presented in [89].

OnTrack: An Open Tooling Environment for Railway Verification 439

Listing 1.2. One of the ETL rules for unit to CSP datatype transformation

1 rule processUnits transform u : Bjoerner!Unit to d : CSP!DataTypeltem {
2 d.name = u.name;

3 d.type = pos;

4 if (pos_list.firstitem.isDefined()) {

5 d.preceeds = pos_list.firstltem; }

6 pos_list.size = pos_list.size + 1;

7 pos_list.firstitem = d; }

The goal of the Represent transformation is to iterate through a scheme plan,
which is an instance of our DSL meta-model, in order to produce instances of
the CSP||B meta-models. It is implemented using ETL. CSP||B meta-model in-
stances contain collections of objects required to produce the final specification
text. They do not include information on the structure of statements for the fi-
nal formal specification. The Epsilon Validation Language (EVL) [7] can be used
to validate all required objects are defined as expected. We achieve traceability
between the meta-models by defining a structured ETL transformation, i.e., pro-
viding separate ETL scripts that reflect the final specification text architecture.
Overall, our CSP||B model consists of six specifications [J], each generated by
a separate ETL script. These scripts consist of 16 rules, 1 local operation and
a 17 shared operations. Listing gives an example rule that transforms units
of a scheme plan to a CSP data type. For each unit, the processUnits rule
constructs a corresponding DataTypeItem which is then added to the datatype
(pos list). For example, for Figure Bl pos 1list = [AAJAB,AC,.. .

The Generate for Verification transformation translates CSP||B meta-model
instances into formal specification text. Interestingly, in CSP||B the formal spec-
ification text differs depending on the property to be proven, see [§] for details.
Therefore, the Generate for Verification transformation produces a number of
different specification texts. These transformations are implemented using the
Epsilon Generation Language (EGL) [7] for generating text. For example, the
pos list datatype instance becomes the following fragment of CSP: datatype
ALLTRACK = AA | AB | AC | The transformations are novel as they apply
pre-processing using Apache Velocity Java templates to avoid code repetition.
These together with the EGL are used to generate models. Note that the CSP||B
instance models produced from the Represent transformation only contain the
information of a scheme plan. They do not include a model of the interlocking
algorithm. This algorithm remains constant for all scheme plans and is therefore
defined in a template file which is used in the Generate for Verification transfor-
mation to enrich the CSP||B specifications. Similarly, the behavioural description
of a train remains constant and is again defined in a separate template file. Over-
all, we define six templates which reflect the final CSP||B architecture (1 CSP
script and 5 B machines, see [9] for details). This gives a clear correspondence
between the templates and formal specification structure.

440 P. James et al.

6 Lessons Learnt and Discussion

The OnTrack toolset achieves the aim of automating the tedious production of
formal specifications. The toolset allows for abstractions to be defined over the
DSL in order to produce optimised railway models, from which transformations
to formal specifications can be defined. Importantly, these abstractions are de-
coupled from the formal specifications. In building the tool, the encoding of the
DSL into a meta-model is straightforward, however there needs to be a close
relationship between the graphical artifacts and the meta-model. The benefit of
using the toolset is that we can focus our efforts on understanding the impact
of the verification results on the safety of a scheme plan.

Current work includes the development of a Generate for Verification trans-
formation to the algebraic specification language CASL. Manual encoding has
shown the abstractions over the DSL also aid verification for a CASL based
railway modelling approach [6].

In order to extend the tool to produce formal specifications in languages
other than CSP||B, e.g., for railway verification based on NuSMV by [4], the
following would be required: define a meta-model for the chosen formal language
and then define the Represent and Generate for Verification transformations for
that language.

Future improvements that would aid our understanding of the results is to
visualise feedback of any counterexamples, produced during verification on the
scheme plan itself. Similar visualisations have already been achieved in [2].

References

1. Bjgrner, D.: Formal Software Techniques for Railway Systems. In: CTS 2000 (2000)

2. dos Santos, O.M., Woodcock, J., Paige, R.F.: Using model transformation to gen-
erate graphical counter-examples for the formal analysis of xXUML models. In:
ICECCS, pp. 117-126. IEEE Computer Society (2011)

3. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley Professional (2009)

4. Haxthausen, A.E.: Automated generation of safety requirements from railway in-
terlocking tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS,
vol. 7610, pp. 261-275. Springer, Heidelberg (2012)

5. Iliasov, A., Romanovsky, A.: SafeCap domain language for reasoning about safety
and capacity. In: Workshop on Dependable Transportation Systems. IEEE CS (2012)

6. James, P., Roggenbach, M.: Designing domain specific languages for verification:
First steps. In: ATE 2011. CEUR (2011)

7. Kolovos, D., Rose, L., Paige, R., Garcia-Dominguez, A.: The Epsilon Book. The
Eclipse Foundation (2012)

8. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and Model Checking Abstractions of Complex Railway Models using CSP||B. In:
HVC 2012. LNCS (to be published)

9. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Railway
modelling in CSP||B: the double junction case study. In: AVOCS 2012. EASST
(2012)

10. Invensys Rail: Invensys Rail Data Model — Version 1A (2010)

	OnTrack: An Open Tooling Environment�for Railway Verification
	1 Introduction
	2 Workflow
	3 The OnTrack Editor
	4 Automatic DSL Abstractions
	5 Automatic Generation of CSP||B Models
	6 Lessons Learnt and Discussion
	References

