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An Overview of the Presentation

Overview:

SCADE

Pelican Crossing: to demonstrate modelling and use of
SCADE’s model checking capabilities.

Case Study: A Real Interlocking.

Project programme.

In this talk we will concentrate on SCADE and its application,
rather than on the underlying theory and techniques.

The following presents the progress since the start of the project in
November.
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Railway Interlockings and Ladder Logic

Railway engineers use a programming language called Ladder Logic:

@ A graphical language for programming logic controllers.
o Part of the IEC 61131 standard.
@ Sequentially executed

@ The subset used here is similar to propositional logic.

The three main stages in an execution cycle of an interlocking are:
@ Reading of Inputs
o Internal Processing

o Committing of Outputs
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Railway Interlockings and Ladder Logic
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Railway Interlockings and Ladder Logic
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Railway Interlockings and Ladder Logic
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Railway Interlockings and Ladder Logic
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The SCADE Suite by Esterel Technologies is a IDE for developing
safety critical embedded systems.

SCADE moto: Design, Verify, Generate.

Certified compiler: EN 50128 Software for railways and protection
systems.
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SCADE Suite
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Model Checking Techniques Used By SCADE

Verification Techniques applied in SCADE.

@ Bounded model checking.

@ Induction over time.

° ...
The following techniques are applied in SCADE's built in model
checker in order to decide the Satisfiability of formulas:

@ Stdlmarck’s saturation method.

@ Davis-Putman-Loveland-Logemann.

@ Reduced ordered binary decision diagrams.
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A Simple Pelican Crossing in SCADE
Example created/used by Kanso and James

It consists of 4 two aspect lights that control the flow of
pedestrians and traffic and a button for pedestrians that indicates
that a pedestrian would like to cross the flow of traffic.

@ 1 input variable "pressed” .

@ 2 variables representing an internal state: "crossing” and
"required”

@ 8 variables representing some external state, 2 variables for
each of the 4 lights: “tlag”, “tlar”, ... "plag”, "plar”", ... .
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Pelican Crossing Ladder Logic 1

req crossing crossing
] /D
pressed req req

] /D
pressed crossing tlag
7=
1req[

0

pressed crossing tlbg
/1 /=
1req[

0
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crossing

Pelican Crossing Ladder Logic 2

tlar

] —CD
crossing tlbr
] —CD
crossing plag
] —CD
crossing plbg
] —CD
crossing plar
/D
crossing plbr
/D
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Modelling in SCADE

pre The pre operator allows us to access the value of a
variable used in the previous cycle of a ladder logic
program.

-> The -> operator allows us to express that a variable
has a certain value in the initial cycle of a ladder

logic program as well as what it subsequent values
depend on.

Example:

A = False -> (not (pre A))

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE



Ladder Logic / SCADE Comparison

Ladder Logic:

‘ pressed req req

] [ 1/L e
I 171 \)

SCADE Language:

req = false -> pressed and (not pre req);

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE



Model as a node in SCADE

node PelicanladderLogic(pressed: bool)
returns (req, crossing, tlag, tlar, tlbg, tlbr,

let

plag, plar, plbg, plbr: bool)

crossing = false -> pre req and (not (pre crossing));

req = false -> (not pre req) and pressed;

tlag
tlbg
tlar
tlbr
plag
plbg
plar
plbr
tel

false -> ((not pressed) or req) and (not crossing);
false -> ((not pressed) or req) and (not crossing);
true -> crossing;

true -> crossing;

false -> crossing;

false -> crossing;

true -> not crossing;

true -> not crossing;
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Safety Condition

A safety condition for the pelican crossing:
safelights = true -> (tlag xor plag)

It should be the case that either a green light is showing for the
traffic or the pedestrians; but never both at the same time.

SCADE will check that the variable safelights always has value
true.
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Railway Interlockings in SCADE

Case study: Interlocking A: 331 rungs, 599 variables.

The ladder logic program was automatically translated into the
SCADE language using a modification of the tool by Kanso and
James.

Tool by
——

Ladder logic Scade language

Kanso/James/Lawrence
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Verification of a Safety Condition for Interlocking A

We verified a safety condition: “if a green light is set and a route
is selected then the green bulb has not blown” .

’S1.D’ & ’R1(2).RU’ -> ’R1(2).UEC’

This was formalised as the following in the SCADE language.

safe = (not (vS1_D_1 and vR1_2__RU_1)
or vR1_2__UEC_1);

This produces a counter example after 4 steps.
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Tasks General Info
time of analysis Saturday 20 March 2010 15.06
model Delicancrossing
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Project Programme
Next Steps

Comparison with results from previous projects with Invensys
(using SAT-solving and different model checkers.) So far no
quantifiable results, but our outcomes suggest that SCADE is

faster.

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE



Project Programme
Next Steps

Comparison with results from previous projects with Invensys
(using SAT-solving and different model checkers.) So far no
quantifiable results, but our outcomes suggest that SCADE is
faster.

Analyse applicability of SCADE:

@ Work so far already demonstrates that SCADE can be used in
the railway domain.

o Advantage: The combination of methods makes it fast.

o Disadvantage: Hidden underlying methods make it difficult
to trace what is really happening.

Study how to add domain specific knowledge, specifically we need
to exclude false negatives (i.e. false counter examples.)
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Project Programme:
Further Work

Investigate:

@ Limits of Railway Interlocking examples in SCADE: How many
variables and rungs can SCADE handle.

@ Further safety conditions and liveness conditions.

@ Further functionality of SCADE: explore and control other
capabilities (eq code generation).

@ Is a combination of first order theorem proving and model
checking applicable?
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Thank you for listening to my talk!
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