Verifying Railway Interlockings Using SCADE

Andy Lawrence
Swansea University

7th April 2010

A project in cooperation with Invensys Rail UK.

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

An Overview of the Presentation

Overview:

SCADE

Pelican Crossing: to demonstrate modelling and use of
SCADE’s model checking capabilities.

Case Study: A Real Interlocking.

Project programme.

In this talk we will concentrate on SCADE and its application,
rather than on the underlying theory and techniques.

The following presents the progress since the start of the project in
November.

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Railway Interlockings and Ladder Logic

Railway engineers use a programming language called Ladder Logic:

@ A graphical language for programming logic controllers.
o Part of the IEC 61131 standard.
@ Sequentially executed

@ The subset used here is similar to propositional logic.

The three main stages in an execution cycle of an interlocking are:
@ Reading of Inputs
o Internal Processing

o Committing of Outputs

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Railway Interlockings and Ladder Logic

[Control System]

[Railway System]

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Railway Interlockings and Ladder Logic

[Control System]

@@
9(,@
6‘(\9

[Interlocking System]

[Railway System]

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Railway Interlockings and Ladder Logic

[Control System]

[Railway System]

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Railway Interlockings and Ladder Logic

[Control System]

Enforces Safety,

(Stops unsafe requests)

—

[Interlocking System

/711/9
Railway State
y 1:91(@

[Railway System]

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

The SCADE Suite by Esterel Technologies is a IDE for developing
safety critical embedded systems.

SCADE moto: Design, Verify, Generate.

Certified compiler: EN 50128 Software for railways and protection
systems.

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

SCADE Suite

Architecture
Design Capture

System Requirements

Requirements Management

Algorithm
Design Capture

L

L

5!

.
Configuration
Management

B

Automatic
Documentation
Generation

Project

Management

i
bl

Object Code
Verification

Lawrence Swansea University Verifying Railway Interlockings Using SCADE

-]

SCADE
)W L

/

N

Debugging & Simulation

Certifled % Verification
\ Software Factory | &
‘ : / Formal Verification yalidation

Code
' Generation
DO-178B Qualified

]
EN 50128 [.(| ~

IEC 61508 &
Certif

On Target

Model Checking Techniques Used By SCADE

Verification Techniques applied in SCADE.

@ Bounded model checking.

@ Induction over time.

° ...
The following techniques are applied in SCADE's built in model
checker in order to decide the Satisfiability of formulas:

@ Stdlmarck’s saturation method.

@ Davis-Putman-Loveland-Logemann.

@ Reduced ordered binary decision diagrams.

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

A Simple Pelican Crossing in SCADE
Example created/used by Kanso and James

It consists of 4 two aspect lights that control the flow of
pedestrians and traffic and a button for pedestrians that indicates
that a pedestrian would like to cross the flow of traffic.

@ 1 input variable "pressed” .

@ 2 variables representing an internal state: "crossing” and
"required”

@ 8 variables representing some external state, 2 variables for
each of the 4 lights: “tlag”, “tlar”, ... "plag”, "plar”",

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Pelican Crossing Ladder Logic 1

req crossing crossing
] /D
pressed req req

] /D
pressed crossing tlag
7=
1req[

0

pressed crossing tlbg
/1 /=
1req[

0

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

crossing

Pelican Crossing Ladder Logic 2

tlar

] —CD
crossing tlbr
] —CD
crossing plag
] —CD
crossing plbg
] —CD
crossing plar
/D
crossing plbr
/D

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Modelling in SCADE

pre The pre operator allows us to access the value of a
variable used in the previous cycle of a ladder logic
program.

-> The -> operator allows us to express that a variable
has a certain value in the initial cycle of a ladder

logic program as well as what it subsequent values
depend on.

Example:

A = False -> (not (pre A))

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Ladder Logic / SCADE Comparison

Ladder Logic:

‘ pressed req req

] [1/L e
I 171 \)

SCADE Language:

req = false -> pressed and (not pre req);

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Model as a node in SCADE

node PelicanladderLogic(pressed: bool)
returns (req, crossing, tlag, tlar, tlbg, tlbr,

let

plag, plar, plbg, plbr: bool)

crossing = false -> pre req and (not (pre crossing));

req = false -> (not pre req) and pressed;

tlag
tlbg
tlar
tlbr
plag
plbg
plar
plbr
tel

false -> ((not pressed) or req) and (not crossing);
false -> ((not pressed) or req) and (not crossing);
true -> crossing;

true -> crossing;

false -> crossing;

false -> crossing;

true -> not crossing;

true -> not crossing;

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Safety Condition

A safety condition for the pelican crossing:
safelights = true -> (tlag xor plag)

It should be the case that either a green light is showing for the
traffic or the pedestrians; but never both at the same time.

SCADE will check that the variable safelights always has value
true.

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

.E\e Edt View Operator Insert Layout Project Took Navigate Window Help
DEE@| 4 BE X & W | [Peoncosnger v/ & £ Q1Y

QL) O — T

ressed: bool)

node
[R ey

WS, i
BiEE Balfisshes: bool

S

s P.uhnam:vunmn v

= 7 Pelicancrossing.etp lar. gl
(2 Desin Vet Fie) plex. plbs.

- 1 Model Files
(3 SCADE Libraries Lot

crossing = false pre req and (not 1pre crossing)) .

Toq - Faloe 5 (not bre red) snd pressed

tlag - false = ((not Pressed) or req) snd (not crossing);

-> ((not pressed) or req) and (not crossing):

o TN enotal

tlbr = true -> crossing:

plbr = true -> not crossing:
safelights = true —> (tlag xor plag) :

tel |

‘SCADE
Proot cbjective PelicanSafetyCond safecross: corresponding SCADE
d: corresponding SCADE node output not 1

Proof cbjective Ladderlogic.safecon:

14005 191\ Messages ATITC Do Bt St oo 7] < 3

"~ (51 Fieview [S Frame esign V.
xl[Toading project Pelicancrossing etp a [H[oefa
dlSuccesstully loaded project Pelicancrossing ctp a| [1
Pel SCADE node out
Proof cbjective Pelicanladderl SCADE node out
[root cbiective el ht E node outy
ocatpy No propetties available 1

L2z, Col§. E

Zor Help, press F1

@]Fle Edt Vew Operator Insert Layout Project Tooks Nevigate Window Help = Sl

DEE@ L BREX 0 EB[2 N [[Phmcosiger w2 SEHXQUBD s BBAY

9T Simuaton L

Tasks General Info
PelicanladderLogic safelights time of analysis Tuesday 23 March 2010 14:54
model Pelicancrossing
user csal
Sum Up
Pelicanl adderL ogic safelights Valid
Tasks
PelicanLadderLogic.safelights
Node Pelicanl adderLogic
Output safelights
Strategy Default - Prove
Result Valid
Translation time 0s
Analysis time 0s
Total time 0s
Assertions none
Messages none
Task Resut [ot ~
7 | @ reicantaddertogic safeights valid
[>+ 35 \MTC Dump },Buid J, Sirulator J, Matisb), Browse /]| < > Nopicpetiss aveiable v

Sone

Railway Interlockings in SCADE

Case study: Interlocking A: 331 rungs, 599 variables.

The ladder logic program was automatically translated into the
SCADE language using a modification of the tool by Kanso and
James.

Tool by
——

Ladder logic Scade language

Kanso/James/Lawrence

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Verification of a Safety Condition for Interlocking A

We verified a safety condition: “if a green light is set and a route
is selected then the green bulb has not blown” .

’S1.D’ & ’R1(2).RU’ -> ’R1(2).UEC’

This was formalised as the following in the SCADE language.

safe = (not (vS1_D_1 and vR1_2__RU_1)
or vR1_2__UEC_1);

This produces a counter example after 4 steps.

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Tasks General Info
time of analysis Saturday 20 March 2010 15.06
model Delicancrossing
user csal

Sum Up

Tasks

Node
Output
Strategy
Result
Scenario

Translation
time
Analysis
time

Total time
Assertions
Messages

I ogic
safe

Default - Prove
Falsifiable

I o cic. safe <0555
| [Load Scenario]

0s

0s

0s
none
none

Var 1 2 3 4

S Inputs
" tue tue e fake
53 false false false fakse
= false false fake fake
" false false false fake
" tue false false fake
- false tue e fake
£ false tue e fakse
» tue false e false.
5 tue tue e fake
53 tue false false fakse
= falee false e fake
" tue tue e fake
" false false false fake
- false false false fake
£ false false false fakse
= e tue e fake
5 tue tue false fake
53 tue tue false fakse
- false false false fake
" false tue false fake
" false false false fake
- false false false fake
£ false false false fakse
» false tue true false.
5 tue false false fake
53 false tue e fakse
- tue tue e fake
" false false false fake
" false false false fake
- false tue e fake
£ false false false fakse
» false false false false.
5 false false false fake
53 false tue e fakse
- false false false fake
" tue false false fake
" false tue e fake
- tue false false fake
I false false false fakse
» false false false false.
5 false false false fake
53 false false false fakse
- tue tue false fake
" false false false fake
" tue tue e fake
- false tue false fake
5 tue tue false fakse
= false false false false.

Project Programme
Next Steps

Comparison with results from previous projects with Invensys
(using SAT-solving and different model checkers.) So far no
quantifiable results, but our outcomes suggest that SCADE is

faster.

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Project Programme
Next Steps

Comparison with results from previous projects with Invensys
(using SAT-solving and different model checkers.) So far no
quantifiable results, but our outcomes suggest that SCADE is
faster.

Analyse applicability of SCADE:

@ Work so far already demonstrates that SCADE can be used in
the railway domain.

o Advantage: The combination of methods makes it fast.

o Disadvantage: Hidden underlying methods make it difficult
to trace what is really happening.

Study how to add domain specific knowledge, specifically we need
to exclude false negatives (i.e. false counter examples.)

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Project Programme:
Further Work

Investigate:

@ Limits of Railway Interlocking examples in SCADE: How many
variables and rungs can SCADE handle.

@ Further safety conditions and liveness conditions.

@ Further functionality of SCADE: explore and control other
capabilities (eq code generation).

@ Is a combination of first order theorem proving and model
checking applicable?

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

Thank you for listening to my talk!

Andy Lawrence Swansea University Verifying Railway Interlockings Using SCADE

