SAT-based Model Checking and its
applications to Train Control Systems

Phillip James

A thesis submitted to Swansea University in
candidature for the degree of Master of Research

Swansea University
Prifysgol Abertawe

Department of Computer Science
Swansea University

February 2010

Declaration

This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

(candidate)

Statement 1

This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is ap-

pended.

(candidate)

Statement 2

I hereby give my consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside or-

ganisations.

(candidate)

Abstract

Formal verification of railway control software has been identified to be one of the “grand
challenges” [Jac04] of Computer Science. In this thesis, we demonstrate the successful
application of various SAT-based model checking techniques to verify train control systems.

Starting with a propositional model for a control system, more specifically an interlocking,
we show how execution of the system can be modelled via a finite automaton. We give both
bounded and unbounded algorithms to perform SAT-based model checking over such an
automaton, commenting on the advantages and disadvantages of each. In order to tackle
the state space explosion problem, we propose slicing. We then give the correctness of this
method with respect to our modelling approach.

The result of the thesis is a verification tool that combines the algorithms considered within
the thesis. The tool has been applied to two real world interlocking systems and a discussion
of the results is given.

Acknowledgements

Firstly, I wish to thank Dr. Markus Roggenbach for his guidance throughout the project.
Without his patience and continuous support this project would not have been possible. 1
look forward to the prospect of continuing to work under his supervision. I also thank his
close friend Erwin R. Catesbeiana (Jr) for keeping us both on track.

I would like to thank my family and close friends for their support throughout my university
education. I especially thank Emma Thom for the many times where her support has been
very much needed.

Thanks is also extended to my second supervisor Dr. Anton Setzer, and to my examiners
Prof. Achim Jung and Dr. Neal Harman. Their comments and suggestions have helped
substantially improve this project.

I would like to thank our industrial partners Invensys for funding the project, and thank
Swansea University’s Department of Computer Science for giving me the opportunity to
complete this work.

Finally, I would like to acknowledge all the support from my close colleagues within the
Computer Science, including Liam O’Reilly, Temeshgen Kahsai, Matthew Gwynne, Fredrik
Nordvall Forsberg, Karim Kanso, Jennifer Pearson and Tom Owen.

iii

Table of Contents

Introduction

1.1 Overview of Formal Methods in the Railway Domain
1.2 Project Aims and Approach,
1.3 Thesis Outline

Railway Signalling

2.1 Railway Components L
2.2 History of Signalling e
2.3 Imterlocking Systems L
2.4 The Implementation of Westrace Interlockings.

2.5 Westrace Ladder Logic Programs

Modelling Interlockings and SAT

3.1 Propositional Logic
3.2 Modelling Ladder Logic in Propositional Logic
3.3 Representation via Automata Lo
3.4 Safety Conditions
3.5 Satisfiabilityo

A Survey of Verification Approaches for Ladder Logic

4.1 Verification Lo
4.2 Verification of Ladder Logic
4.3 Verification of Westrace Interlockings — Kanso 08
4.4 An Example of Inductive Verification

Bounded Model Checking

5.1 The Origin of Model Checking
5.2 Representing State Sequences oL
5.3 Applying Bounded Model Checking to Ladder Logic
5.4 Example Application of Iteration Algorithms

W N ==

© = ot o

10
12

17
17
19
22
24
25

27
27
28
30
33

6 Unbounded Model Checking 49

6.1 Loop Free Paths 49
6.2 Explicit Inclusion Check o L 52
6.3 Application of the Inclusion Check to Ladder Logic 55
6.4 Temporal Induction Lo oo 56
6.5 Application of Temporal Induction to Ladder Logic 58
7 Program Slicing 63
7.1 The Concept of Program Slicing 63
7.2 Slicing Ladder Logic oo 65
7.3 Application of Slicing to a Simple Example 68
7.4 Correctness of Slicing Ladder Logic, 69
8 The Verification Tool 75
8.1 The Original Tool e 75
8.2 Development of the New Tool 78
8.3 Encoding A New Train Station 80
8.4 Implementing New Verification Strategies and Slicing 81
8.5 Software Engineering Practices L. 82
9 Verification Results 85
9.1 The Testing Platform, 85
9.2 Experimental Results — Interlocking A 86
9.3 Experimental Results — Interlocking B 90
9.4 Analysisof Results 93
10 Conclusions and Future Improvements 97
10.1 Summary oL e 97
10.2 Possible Future Work oo oo 98
A Inductive Verification 109
B Forwards Reachability — Incorrect Ladder Logic 113
C Forward Reachability with Inclusion Check 119

D Temporal Induction 125

Chapter 1

Introduction

Contents

1.1 Overview of Formal Methods in the Railway Domain.
1.2 Project Aims and Approach
1.3 Thesis Outline it

Railways are a prominent example of critical systems. Failures in the control systems for
railways can have disastrous consequences. The growing pressures on railway systems to
provide both safe and efficient operation of the railway network has lead to an increased
interest into the applications of Computer Science. Since the early 1980’s, following an act
of law allowing the use of microprocessors in the design of safety critical systems [KRO1],
there has been a steadily increasing application of Computer Science within the railway
industry. From advanced routing systems [ZKvHO01, MOOQ7] through to automatic train
protection systems [Sim94] Computer Science now plays a role in many aspects of modern
railway systems.

1.1 Overview of Formal Methods in the Railway Domain

In recent years there has been a large amount of interest [Bjo09, KMS08, WR03, Win02,
HP00, INE09, BGO00] in the application of formal methods, including formal verification of
systems, within the railway domain. Here we shall concentrate particularly on the formal
verification of railway computer systems with regards to safety properties.

Early work including [BFG1T98, BAB95] explored the possible application of traditional
modelling and verification methods to railway systems. These approaches used traditional
techniques such as process algebra and often the results illustrated the high complexity
involved in verification of complex systems, such as railway systems. This is exactly why
the verification problem for railway systems has been described as a “grand challenge” of
Computer Science [Jac04]. Recent advances in verification methods, including the introduc-
tion of satisfiability (SAT) solvers [BHVMWO09] to model checking [SSS00, ES03, ADK™05],

Chapter 1 Introduction

have meant that more recent attempts at verifying railway systems have in fact been suc-
cessful [KMS08, Kan08, WR03]. This project, in co-operation with Invensys [inv09], an
internationally established company!, explores the application of such modern verification
processes to real world railway systems, leading to the production of a verification tool for
interlockings [KRO1] programmed using ladder logic [TECO03].

1.2 Project Aims and Approach

In this project, due to recent successes [Kan08, KMS08], we explore SAT [BHvMWO09]
based verification methods and how such methods scale up with application to real world
railway control software. We explore a series of verification techniques including induc-
tive verification [SSS00], bounded model checking [BK08, CGP99] and temporal induc-
tion [SSS00, ES03], applying each method to yield the verification of Westrace interlock-
ings [wes09]. Along with these methods we propose techniques to reduce the complexity
of verification, including program slicing [Tip95, FH98] and comment on the possibilities
of applying functional dependency removal [JB04]. Finally these techniques have been
combined into a verification tool for use by Invensys.

The project continues and extends a successful project by Kanso [Kan08], where SAT based
inductive verification gave impressive results when applied to the verification of a single
Westrace interlocking system [wes09]. Kanso develops a parser for ladder logic programs,
the language used to describe such interlocking systems. Using the parser, Kanso translates
such ladder logic programs into a propositional formulae based model. Finally Kanso
translates given safety conditions into propositional formulae and verifies that these safety
conditions are valid within the propositional ladder logic model. The approach taken by
Kanso motivates our work and for this reason we shall revisit the approach in more depth
in Chapter 4.

The approach by Kanso, was not without its problems. The main problem highlighted in
the work by Kanso, was the problem of unreachable system states. This problem gives arise
to the need for manual analysis of the counter examples to decide whether or not the given
counter example is reachable by the system. For inclusion into the standard development
process of interlockings, Invensys requires further automation of the verification. For these
reasons, the main aim of this project is to explore the feasibility of SAT based model
checking techniques. Such techniques are able to exclude the problem of unreachable states
and in the case that a safety condition does not hold, not only do they allow the production
of counter examples, but also traces to how these counter examples occur.

To achieve this goal, we use the modelling language of propositional logic. We model both
the interlocking system requiring verification, and the safety condition, before formulating
the problem into a satisfiability problem [BHvMWO09]. This satisfiability problem is then
discharged to a SAT solver [BHvMWO09, min09, par09]. The result of the verification
process is either that the system is safe, or that a counter example trace is produced
to a violating system state. A further result of this project, is the verification of a new

e.g., within Australia, Germany and the U.K.

1.3 Thesis Outline

train station. That is the verification tool we give has been applied to verify not only the
interlocking verified by Kanso in [Kan08|, but also to the verification of another slightly
more complex interlocking system. First reports on this research have been presented
at BCTCS’09 [Jam09a], Swansea Science Day [JK09] and at the postgraduate workshop
VINO [JamO09b]. Furthermore, preliminary results of the work have been published in
PPL’09 [JIR09] and CALCO’jnr [JR09].

Previously, various formal methods have been applied to the area of verification of railways,
including algebraic specification, e.g. [Bjo09], process algebraic modelling and verification,
e.g., [Win02, PGHDO04], and also model oriented specification, where, for example the
B method has been used in order to verify part of the Paris Metro railway [BGOO] in
terms of both safety and liveness properties. There are also several international research
projects [INE09, Tra09] devoted to the challenge of formal verification within the railway
domain.

Importantly for us, approaches have also been taken towards the verification of ladder
logic programs [ZRKO03, FH98]. Ladder logic is the language used by Invensys to program
their Westrace interlockings. Firstly in [ZRKO03] a ladder logic program is translated into
a timed automaton and automatically verified against given properties using the model
checker Uppaal [upp09]. Here the problem of state space explosion is highlighted as the
main restriction of the approach when considering larger ladder logic programs. In [FH98]
an inductive verification approach is taken to verify ladder logic interlockings, the issue of
very large formulae arising from the verification approach is highlighted, and finally some
possible solutions are proposed.

1.3 Thesis Outline

In Chapter 2, we introduce the reader to the terminology and history of railway systems.
We give an overview of interlocking systems and introduce the operational structure of the
Westrace interlocking. Finally we gave a detailed introduction to ladder logic programs.

Chapter 3 introduces the modelling approach we use to model ladder logic diagrams. On
the syntactical level we use the language of propositional logic to describe ladder logic
programs, and on the semantic level we use finite automaton to allow us to reason about
such ladder logic programs. Chapter 3 concludes with an overview on the modelling of
safety conditions, and an introduction to the satisfiability problem for propositional logic.

In Chapter 4, we discuss the field of verification. We define exactly what it means to verify
that a ladder logic program respects a given safety condition. Continuing from this, we
pay attention to the work by Kanso [Kan08, KMS08], from which this project takes its
base. This includes a discussion of inductive verification using a SAT solver, along with
both the successes and the failures of such an approach to verification. Finally an example
application of inductive verification is given, based on a small example ladder logic program.

In Chapter 5, the verification approach of Model Checking is reviewed. The algorithms
which are explored in this project are introduced, along with an discussion of how they
overcome the problems obtained from using inductive verification. That is, the problem of

Chapter 1 Introduction

unreachable states and counter example trace generation. Once again, the chapter closes
with an example application of the proposed algorithms to a small ladder logic program.

Chapter 6 extends the algorithms and approaches given in Chapter 5 to be unbounded.
A discussion is held into how inclusion checks can be formulated in propositional logic,
to ensure that the reachable state space of a ladder logic program is fully verified. This
involves a discussion of loop freedom within automaton, and how this plays a role deter-
mining inclusion. A inclusion check is then given, along with a correctness proof for the
inclusion check. Finally the verification approach of temporal induction is introduced, and
the application of both the explicit inclusion check and temporal induction is illustrated
on an example ladder logic program.

Chapter 7 begins by introducing the research area of program slicing. It is shown how
program slicing is used within the debugging of systems, and then an algorithm for slicing
ladder logic programs is given. This algorithm is used to reduce the propositional formula
size needed to represent such a ladder logic program. The application of slicing is shown
via means of an example, and a correctness proof is given showing that the application
of slicing preserves validity of the ladder logic program, with respect to a given safety
condition.

In Chapter 8, we give an overview of the verification tool that has been created for use
by Invensys. We show how the tool is an extended and improved version of the tool given
in [Kan08]. We then comment on the problems that had to be overcome to enhance the tool
to allow us to verify a new train station. We give a discussion of the software engineering
principles that have been followed in the development of the tool. Finally some possible
future improvements that could be made to the tool are given.

Chapter 9 gives the verification results achieved using our tool. The results of verification of
two train stations are given, along with a comparison of all proposed verification techniques.
In this chapter, we see the successes of the project in terms of meeting its goals to give a
verification tool that is able to produce counter example traces and also ignore unreachable
system states. Finally the results of applying our slicing technique to the verification
process is discuss.

In Chapter 10 we draw the thesis to a close. To do this we comment on the main practical
and theoretical results of the project, and propose some possible areas of future work.

Chapter 2

Railway Signalling

Contents
2.1 Railway Componentsttt 5
2.2 History of Signalling., 7
2.3 Interlocking Systems 9
2.4 The Implementation of Westrace Interlockings. 10
2.5 Westrace Ladder Logic Programs 12

The birth of railways as we know them, dates back to 1804, when Richard Trevithick
introduced a steam locomotive guided by rails [Bur02]. The locomotive was used to trans-
port iron in the South Wales valley of Merthyr Tydfil, and was the first such installation
anywhere in the world. Since this introduction, railway design has seen many advances,
leading to modern high speed railways seen across the world today. This project focuses
on computerised equipment currently used within railways. For this reason, we introduce
the reader to some basic railway components and terminology visible in nearly all modern
railways. Continuing from this, we give a brief history of railway signalling systems, moti-
vating the use of formal methods within the design of such systems. Finally we look at the
details of interlocking systems, concentrating on the Westrace Interlocking system |[wes09]
designed by Invensys.

2.1 Railway Components

Here, we introduce the main railway terminology we will use throughout the following
chapters. To do this we give a small example of a typical section of railway (Figure 2.1)
and discuss the main features that occur within it. More details on all the topics discussed
below can be found in [KRO1].

Chapter 2 Railway Signalling

T1 | T2

Figure 2.1: An example railway.

2.1.1 Track Segments

A track segment is usually an alpha-numeric string that is used within track plans to break
the overall railway down into small areas of track. Figure 2.1, shows four track segments,
namely T'1, T2, T3 and T4. Track segments are not fixed to a particular size, and often
some track segments represent very long sections of the railway and others very short.

2.1.2 Signals

Signals are primarily used to inform train drivers of possible problems on the railway ahead,
and what actions they should take to prevent an accident. Usually signals are placed along
the side of the track, as shown in Figure 2.1. Within the railway domain, the indication
that is given to a driver by a signal is known as an “aspect”. Originally different aspects
were displayed using different physical orientations of the signal, although most modern
signals make use of coloured lights. The signals S1 and S2 in Figure 2.1 both have three
aspects, namely:

e Red — Indicating to the driver that he should stop.
e Yellow! — Indicating to the driver that he should proceed with caution.
e Green — Indicating to the driver that he may proceed.

These three colours are the main colours used in varying types of signal across the world,
although some signals also make use of white aspects. The signals in Figure 2.1 are known
as three aspect signals and along with these both two aspect and four aspect signals are
commonly used. Usually, four aspect signals are used on higher speed lines and two aspect
signals on lower speed lines. The different number of aspects allow for a different variety
of messages to be portrayed to the driver, which in turn gives the driver a safe breaking
distance. The details of such signalling schemes will not be of interest for the remainder of
the document, so for further information the reader is encouraged to see [KRO1].

'Notice this is not amber like in other transportation systems.

2.2 History of Signalling

2.1.3 Points

The term “point” is used within railways to represent a junction or split in the rails.
In track segment 72 of Figure 2.1, there is a point that splits the track into two. A
point is traditionally controlled via a lever, allowing the operator to decide which path the
oncoming train takes. In our example in Figure 2.1, if the point is set to allow travel from
track segment 7T'1 through to track segment T3, then it is said to be in “normal” position.
Whereas if it was set to allow travel between T'1 and T4, then it is said to be in “reverse”
position.

2.1.4 Routes

The last topic of railways we study is that of routes through the railway. By route, we
mean the physical path a train may take along the tracks of a railway. For example, in
Figure 2.1, assuming trains can only travel from left to right, there are two possible routes
that a train may take, the choice of which is dependant on the positioning of the point.
The operation of deciding and setting which route a train should take is known as route
setting. Route setting can be performed by a human signaller or automatically by given
railway systems. The operation of setting a route involves changing various signals along
the track, and also setting the position of many points. Clearly then, route setting needs
to be monitored carefully to avoid trains being derailed or crashing.

2.2 History of Signalling

Since railways first began in the early 19" century, there has always been some form of
signalling technique to control the operation of trains. Even though these techniques did
not initially include fixed signals, for example policemen giving signals to train drivers using
coloured flags, the notion of signalling has played a key role in shaping the current design
of railways around the world.

The principle task of signalling within the railway is to ensure the safe operation of the
railway, for example a signalling system should not allow two trains to collide, nor should
it allow one train to follow another at a dangerously close distance. Another key role that
signalling must fulfil, is with regards to the throughput of the railway. As the demand for
quicker train services grows, so does the need for more complex signalling algorithms. From
this point onwards we shall only consider aspects of signalling regarding safety, although
the reader should be aware that much of the complexity of modern interlocking systems
is caused by the need for ever more efficient signalling systems. We shall now give a brief
historical account of railway signalling and its main concepts.

The earliest form of a signalling system within railways consisted of policemen patrolling
each individual station. As mentioned above, the policemen would indicate to passing
drivers whether or not it was safe to proceed using different coloured flags (or oil lamps
by night). Policemen would use their own timing method, typically a pocket watch, to

Chapter 2 Railway Signalling

DANGER CAUTION CLEAR

Figure 2.2: Illustration of the aspects of Semaphore signals.

decide when it was safe for a train to depart from the station. This scheme worked rela-
tively successfully given that there was no communication between adjacent stations, and
that timings between stations were not synchronised in any way. Many people often ar-
gue [KRO1] that the lack of accidents during the early years of railways, was probably due
to the low speed of trains at the time.

Around 1842, flags were beginning to be replaced by fixed signals that indicated whether or
not a train should proceed. These signals came in many forms, the most popular of which
was the ‘semaphore’ signal. The semaphore signal has three different aspects:? one aspect
for proceed, another aspect for proceed with caution and a final aspect for stop. These
aspects are illustrated in Figure 2.2. Quickly after the introduction of semaphore signals, it
was realised that many signals could be operated from a single location. Through the use
of wires, each signal was connected to a lever, meaning that a policeman no longer had to
manually walk around changing signals but could just control all the levers from a central
point. This central location became known as the ‘signal box’, and the controllers of the
signal box became known as signallers.

The next major design step came in the late 1850’s, The idea to design the levers within
signal boxes in such a way that they were physically locked in position unless it was safe
for the signaller to move the lever was introduced. This feature of signalling is known as an
‘interlocking’ and is one of the main components used within signalling today. Interlocking
systems will be discussed further in Section 2.3.

Around the same period as interlockings were being introduced, simple Morse code like
communication techniques were installed between adjacent stations. With this communi-
cation and interlockings becoming well established, railways in general managed to achieve
rather high safety levels even though the speed of trains was increasing.

Continuing the trend to obtain better safety levels, the next major development was the
introduction of the so called ‘track circuit’in the early 1870’s. A track circuit is an electronic
circuit that could detect whether or not a train was occupying the current track segment.

2 Aspect refers to the physical state being shown by a signal.

2.8 Interlocking Systems

Using such track circuits along a length of railway allowed automatic operation of signals
via these electrical circuits. Very quickly electrical circuits became widely used within
the railway. This included the introduction of electronic light based signals. In the early
1920’s, coloured lights were introduced for signalling. Like the traditional traffic lights
seen on many road networks, different colours of light were used to indicate to the driver
of a train information about what was ahead of them on the track. Over the next ten
years, electrical circuits became even more widely used including to assist in the manual
manoeuvring of levers. Eventually, levers to control signals were removed from the railway
and signallers would change a signal or point by simply pressing a button on a central
control panel.

A trend of small adjustments to railway systems took place over the next twenty five years.
Then in the mid 1980’s, a very important law was changed to allow the use of electronic
components in the control of safety critical devices [KRO1]. This meant that well established
mechanical interlockings could be replaced by microprocessor based interlockings, known
as solid state interlockings or SSI’s [Lea91]. This change brought with it a vast range
of new features for the signaller. One of these features included automatic route setting
by interlockings, where the interlocking would automatically set signals and change track
positions depending on information provided to it from a railway timetable.

Currently new trends in railway systems often rely on the train itself sending information
about its location and velocity to the interlocking and other safety systems. This enables
trains to communicate with the signalling systems directly, meaning technology such as
automatic warning systems (AWS) [Noc85] and automatic braking systems (ATP) [KRO1]
can effectively aid train drivers in the safe running of the railway. With this kind of direct
communication between a train and the signalling system, the need for physical signals
warning drivers is quickly becoming redundant. There are even modern railways where the
need for train drivers has already become redundant, for example the Copenhagen Metro
is completely automated, and this trend seems set to continue in the future.

2.3 Interlocking Systems

The main objective of an interlocking system is to ensure safety within the railway. This
entails ensuring that certain rules are followed whilst computing if the future state of the
railway is safe. For example, an interlocking should not allow a signals aspect to be changed
to “Proceed” if not all of the specified safety conditions are met. The interlocking is also
responsible for bringing the railway into a fail safe state if a problem is detected during
operation. This, in most railways, means bringing all trains to a stop by setting all signals
to show the red aspect.

The interlocking itself enforces a set of rules which cannot be broken when performing a task
to change the state of the railway. Figure 2.3 illustrates the typical use of an interlocking
as a safety layer. The interlocking interfaces with both the physical track layout and the
human (or computerised) controller. The controller will issue a request, such as to change
a signal’s aspect to green, then the interlocking will use the set of rules and current track
information to determine whether it is safe for the operation to be permitted. If it is safe

10

Chapter 2 Railway Signalling

Human Input

|

Interlocking

|]

Physical Railway

Figure 2.3: An interlocking is a safety layer.

then the interlocking will change the physical layout of the track, informing the controller
of the change. Whereas if it is unsafe to complete the operation the interlocking will not
allow the physical track layout to be changed, and will report back to the controller that
the operation will yield an unsafe situation.

The earliest interlockings consisted of many mechanical levers, connected to signals, track
points and other railway entities. The levers were physically arranged so that a lever could
only be moved into a new position if it was safe to move the corresponding track entity.
Over the last thirty years or so, more and more computer based interlockings, such as the
Westrace interlocking, have appeared on mainstream railways. Modern interlockings are
now vastly more complex than the original mechanical interlockings. Interlockings now
obtain information not only from what signallers are entering into the system, but also
from electronic relays on track circuits and information from trains themselves about their
position and velocity etc.

Mainly for historical reasons, the underlying safety properties required to be upheld by
the railway are recorded into large tables known as control tables [Lea91]. The control
tables are designed by experienced engineers who manually design the safety properties
to be ensured by the interlocking. During the design process of such control tables, a
continual test pattern is followed to ensure the designs are correct. Once this process has
been completed to a level that is high enough to be deemed safe, the control tables are
encoded into a Westrace interlocking® using the ladder logic language [IEC03]. Given that
this process is completed by humans, there is always room for human error. This is exactly
why we shall explore the formal verification of Westrace interlockings.

2.4 The Implementation of Westrace Interlockings

We shall now look more closely into the implementation of a Westrace interlocking. Firstly
we discuss the overall control structure of the Westrace, before briefly discussing the phys-
ical parts of the interlocking. Finally we give a detailed definition of the control program
run by a Westrace interlocking, showing a small example of such a program.

3The reader should note that different interlockings such as the VPI [vpi09] use different implementation
languages.

2.4 The Implementation of Westrace Interlockings 11

2.4.1 Westrace Control Structure

As discussed above, the Westrace interlocking communicates with both the system sig-
naller and the physical track layout. Here we look at how and when these communication
processes take place, noting how certain information is manipulated and returned by the
interlocking.

I O

— U —>
N T

> p » Ladder Logic Program > p >
u U

—> T > o —

Figure 2.4: Control cycle of a Westrace interlocking.

Figure 2.4 shows the typical control process taken by a Westrace interlocking. It shows the
following three main stages of operation.

1. Reading of Inputs. — The first stage involves reading input values from various
sources. The input reading process is undertaken by a specialised “I/O module”.
Inputs may include requests from signallers and details from physical track sensors.
It is also possible for input values to be defined as remembered values from the
previous execution of the ladder logic program.

2. Internal Processing. — The second stage involves computing new values for output
variables. This task uses the variables that have been read in stage one. These
variables are then run through a ladder logic program. We will discuss this ladder
logic program in more depth in Section 2.5.

3. Committing of Outputs. — Finally, all calculated outputs are passed back to the
“I/O Module” to be committed to various sources. Here we note that some outputs
may actually be remembered by the interlocking, ready to be used within the next
execution of the control cycle. In this stage, commands to change the physical track
layout may be issued and information may be passed back to the signaller.

These three stages of execution are executed repeatedly? until a problem is detected. If
no problem is detected then the operations are repeated indefinitely. This control loop is
similar to the common control loop executed by many safety critical applications and often
found within control theory [Lev96]. As a notational remark, from this point onwards,
we shall use the words “iteration” and “execution” interchangeably, to represent a single
execution of steps one through to three of the Westrace control cycle.

4For example they could be placed within a simple “while-loop” construct.

12

Chapter 2 Railway Signalling

Figure 2.5: An example section of a ladder logic program.
2.5 Westrace Ladder Logic Programs

The second step of the control cycle for a Westrace interlocking involves the execution of a
ladder logic program [IEC03]. Here we shall define precisely what a ladder logic program
is. To do this we firstly show an example of a ladder logic program, introducing the main
concepts of ladder logic. Then in the next chapter we shall introduce a theoretical modelling
of ladder logic.

Ladder logic is graphical language described in IEC standard 61131 [IEC03] and is often
used for the programming of Programmable Logic Controllers [Bol06] (or PLC’s). It gets
its name from its “ladder” like graphical appearance. The actual ladder logic programs
used by Invensys in the Westrace interlocking only uses a subset of the features of full
ladder logic, and from this point onwards the reader should note that whenever ladder
logic is used we are in fact referring to this subset. Figure 2.5 shows part of a simple ladder
logic program.

The ladder logic diagrams themselves contain a series of horizontal bars, these bars are
known as “rungs”. Each rung of a ladder logic program contains a series of constructs that
contain variables which can have values 1 or 0°. The constructs that can be included on a
rung are:

e Coils — These are used to represent values that are either output by the program, or
used internally later in the program. Coils always occur as the right most construct
of a rung. The value of a coil is determined by the variables occurring previously in
the rung and the shape of the rung.

e Open Contacts — These are used to simply represent the value of the variable within
them.

e Closed Contacts — These are used to represent a negation of the value of the variable
within them.

Sor closed and open as they are commonly referred to in engineering.

2.5 Westrace Ladder Logic Programs 13

C C C
—(0 H=
(a) A coil. (b) An open con- (¢) A closed con-
tact. tact.

Figure 2.6: Main constructs of Ladder Logic.

Along with these constructs, the shape of each rung also carries meaning, it is used to
determine the value of the corresponding coil. Using a propositional logic setting [HR04],
a horizontal line connecting two contacts has the logical meaning of an “And” operation,
and a vertical line connecting two constructs has the logical meaning of an “Or” operation.
A value is now calculated for each coil by starting at the left hand side of each rung, and
calculating, using these constructs and logical operations, the resultant 0 or 1 value.

(a) Horizontal connection representing conjunc-

tion.
(b) Vertical connection representing disjunc-

tion.

Figure 2.7: Possible rung connectors of Ladder Logic.

In Section 3 we show how the semantics of ladder logic programs can be captured completely
using propositional formulae.

2.5.1 A Pelican Crossing Example

We now introduce an example ladder logic program which we use as a running example from
this point onwards. An illustration of a simple pelican crossing system is given in Figure 2.8.
Note that the choice of using a pelican crossing as an example has been motivated by work
in [Kan08].

A pelican crossing is a computerised system found on many road networks throughout the
world. The basic idea is that a pelican crossing allows pedestrians to safely cross a flow
of traffic. To this end, a pelican crossing consists of the following components: four traffic
lights - two for pedestrians, two for the traffic, where for simplicity we assume that all these
traffic lights can only show red or green. The pedestrians traffic lights emit an audio signal
when they show green and have an input button which a pedestrian can press in order to
request the green signal.

In order to program our system, we use the following Boolean variables, distinguished into
input, output, and state variables. There is only one input variable, namely pressed. This
variable becomes true if a pedestrian presses the button at either pedestrian light. We use
the suffix g to indicate that a traffic light shows green, and the suffix r to indicate that a

Chapter 2 Railway Signalling

traffic light shows red. There are four traffic lights, namely pla and plb for pedestrians, and
tla and tlb for traffic. Thus, overall there are eight output variables for lights, namely plag,
plar, plbg, plbr, tlag, tlar, tlbg, and tlbr. When one of these variable is true, the corresponding
light is on. There is one output variable audio. When audio is true then the audio signal
is sounding. Finally there are two state variables, req which “remembers” the value of
pressed, and crossing which indicates that pedestrians may cross the road.

Traffic Light A

Pedestrian Light B

Traffic Flow

Pedestrian
Buttons

Traffic Flow

Pedestrian Light B

Traffic Light B

Figure 2.8: An example pelican crossing.

A ladder logic program to control such a pelican crossing system is given in Figure 2.9.
This example illustrates further, the constructs of ladder logic. The ladder logic program
in Figure 2.9 contains, in total, twelve rungs. We can see, that each rung is made up of
a series of closed and open contacts, and that these contacts are connected using vertical
and horizontal connections. Finally, the program also illustrates that all rungs must end
with a coil.

The first line of Figure 2.9, can be read as: if there was a request req and in the last control
cycle and pedestrians were not allowed to cross the road, then at the end of the current
cycle pedestrians will be allowed to cross the road. Its second line says: In the next cycle
req will be true if a pedestrian pressed the button before starting this cycle (indicated by
pressed) and in the previous cycle there was no request. The remainder of the program can
be read similarly.

Throughout the remainder of this document we shall see how we can model and verify this
ladder logic program using various techniques.

2.5 Westrace Ladder Logic Programs

15

I/
pressed req req
/O
pressed crossing tlag
O
N

pressed crossing tlbg
=
1req[

Il

crossing tlar

I e

Il (.

crossing tlbr

I e

Il (.

crossing plag
O

crossing plbg
I

crossing plar
=

crossing plbr
I

crossing audio
T

Figure 2.9: An example ladder logic program to control a pelican crossing.

16

Chapter 2 Railway Signalling

Chapter 3

Modelling Interlockings and SAT

Contents
3.1 Propositional Logic 17
3.2 Modelling Ladder Logic in Propositional Logic 19
3.3 Representation via Automata 22
3.4 Safety Conditions 24
3.5 Satisfiability e e e e e 25

In this chapter, we discuss how we model Westrace interlockings. This will involve a
discussion of propositional logic, before showing how the various parts of ladder logic can
be described using propositional logic. We then continue to explain how we can use such
propositional formulae to gain an automaton theoretic modelling. We will discuss which
properties we would like to show hold for such interlockings, commenting on how we can
represent such properties using first order logic. Finally we will introduce some basic
background information on SAT solvers, giving an overview of the main algorithms used
within successful tools such as MiniSat [min09] and zChaff [cha09].

3.1 Propositional Logic

To allow us to model ladder logic programs, we need a mathematical language which
captures all of the features of ladder logic and allows us to reason about such ladder
logic programs. For this language, we have chosen propositional logic following success-
ful approaches of [Kan08, KMS08, FH98]. We firstly introduce propositional logic before
continuing to show how we can use propositional logic to model ladder logic programs.

We define the syntax of propositional formulae relative to a given set of variables.

Definition 3.1 (Propositional Formulae): Given a set of variables V', we define the set of
propositional formulae PROP over p(V') as

e T € PROP.

17

18

Chapter 8 Modelling Interlockings and SAT

1 € PROP.

v € PROP forveV.

— € PROP for ¢ € PROP.

WA ¢ for ¥, ¢ € PROP.
o YV ¢ for ¥, € PROP.

For convenience, we shall adopt the following commonly used notations:

1 = ¢ to represent - V ¢ and,
1 < ¢ to represent (¢ = @) A (¢ =).

Now we have a notion of propositional formulae, we define inductively a function vars :
PROP — V, which gives us the set variables that appear in a propositional formulae.

Definition 3.2 (Variables of a formula): Given a propositional formula ¢y € PROP we
define vars : PROP — p(V') inductively as,

e vars(T) =wvars(L) = 0.
e vars(v) = {v} forv e V.

(

(
o vars(—1)) = vars(y) for ¢ € PROP.
o vars(y A ¢) = vars(y) Uvars(¢) for 1, ¢ € PROP.
(

e vars(y V ¢) = vars(y) Uvars(e) for ¥, ¢ € PROP.
For a propositional formulae, we shall use the standard notions of a valuation and satisfac-
tion. That is:

Definition 3.3 (Valuation): A valuation for a variable set V is a map p: V — {0,1}.

Then for satisfaction we have:

Definition 3.4 (|=): Given a set of variables V, a valuation p: V' — {0,1} and a propo-
sitional formulae 1, € PROP. We define

o u=T.

o 1t~ L.

o pnEviff ulv)=1forveV.
g
pEYAGI p =Y and p = ¢.
pEYV oIt p = or = ¢

3.2 Modelling Ladder Logic in Propositional Logic

Later, in Section 3.5, satisfaction of propositional formulae will be the key topic. Satisfac-
tion of such propositional formulae will be the basis of the verification techniques we use
to verify ladder logic programs.

3.2 Modelling Ladder Logic in Propositional Logic

Work has already been completed to translate a given ladder logic program into a proposi-
tional formula representation [Kan08]. Here we define exactly the syntactical structure of
the resultant propositional formula gained from this translation. First, we shall define some
variable sets corresponding to the different types of variables that can occur in a ladder
logic program.

The first set of variables which we will consider are the coils of the ladder logic program.
These are the variables that can be assigned to within the program and in some sense, the
variables that hold the values output by a ladder logic program.

Definition 3.5 (Coils of a ladder logic program): We define C' to be the set of all coils
occurring in a ladder logic program P.

Considering our pelican crossing example ladder logic program in Figure 2.9, we can read
off the following set of coils:

C = {crossing,req, tlag, tlbg, tlar, tlbr, plag, plbg, plar, plbr, audio}.

The next set of variables which are used within the ladder logic program are the set of
variables read as inputs in step one of the control cycle.

Definition 3.6 (Input variables of a ladder logic program): We define I to be the set of
all variables given as inputs to a ladder logic program P.

Again considering our example ladder logic program, we can read off the following set of
inputs:
I = {pressed}.

Notice that in contrast to coils, inputs to ladder logic programs have no explicit represen-
tation in the program. This is because the inputs are provided to the ladder logic program
by the “I/O module” and hence are only referred to in the ladder logic program. Also note
that once input have been set by the “I/O module” they are not updated for the remainder
of that execution cycle.

Before defining the full set of variables that a ladder logic program contains, we firstly give
a small notational definition that will make future definitions easier to interpret.

Definition 3.7 (prime and unprime): Given a universe of variable names U we define
two bijective functions, prime, unprime : U — U such that for all x € U

unprime(prime(z)) = x and

Chapter 8 Modelling Interlockings and SAT

prime(unprime(z)) = x.
Remark 3.8: For some variable x, we often write 2’ to represent prime(z), and for some

set of variables V = {z1,...,z,} we write V' to represent {z},...,z,}.

Finally we define the full set of variables used by a ladder logic program,

Definition 3.9 (Variables of a ladder logic program): The set of variables V' of a ladder
logic program P is defined as a finite set V =1 UC U C’ where I N (C UC") = 0.

Remark 3.10: From this point onwards, when we refer to the set of variables V', we always
mean the set of variables for a ladder logic program via the given definition.

To illustrate such a variable set, consider once more our pelican crossing example in Fig-
ure 2.9, were we have the following variable set:

V=Irucuc

where
o [= {pressed},
o C = {crossing,req,tlag,tlbg, tlar, tlbr, plag, plbg, plar, plbr, audio},
o C' = {crossing’,req ,tlag ,tlbg , tlar’ tlbr', plag’, plbg’, plar’, plbr’ audio'}.

Here, the set of variables C' represents values remembered by the ladder logic program from
its previous execution. This follows from the control cycle of a ladder logic program given
in Figure 2.4.

Using the structure of a ladder logic program, we can define the format of a rung in
propositional logic:

Definition 3.11 (Rung): A rung (over V) is a propositional formula R € PROP with the
structure R = ¢/ < ¢ where ¢ € C’'; ¢ € PROP over V, and ¢ ¢ vars(y).

An example of such a rung is the first line of Figure 2.9 where we have the rung

crossing’ < (req A —crossing).

Using our definition of a rung, we can describe an entire ladder logic program as an order
dependant series of rungs represented as propositional formula. The following definition
captures the requirement that the order of rungs matters within ladder logic programs.

Definition 3.12 (Ladder Logic Propositional Formulae): A ladder logic formula ¢ p (rel-
ative to a set of input variables I and a set of state variables ') is a propositional formula

Yp = ((ch © 1) A(cy & P2) A= A6, © Pn))

for some n > 0, such that:

3.2 Modelling Ladder Logic in Propositional Logic 21

e foralll1<i<mn:c € lLe., ¢ is an output coil.
o forall 1 <i,j <n:ifi#j= c]#c}. Le, output coils are uniquely defined.

e foralll <i<mn: vars(y;) CIU{d,...c;_;}U{c,...,cn}. Le., Variables occurring
on a rung must have been previously defined either as inputs or coils.

Note that here we use the convention that {c},...,cp} = 0. If n =0, as usual ¢ = True.
The empty program will prove to be useful later, in the context of slicing.

Remark 3.13: For a ladder logic propositional formula
vp = ((ch & 1) Ay & P2) A Ale, € ¥n)) € PROPL

we will use the notation
Yp = [Rl, Ro,... ,Rn] € PROPy,

where R; = ¢, < 1;, for 1 < i < n, for some n > 0, and the list notation is used to represent
the conjunction of rungs.

Given this formulation, we can now produce a propositional formula representing the pel-
ican crossing ladder logic program. The resultant propositional formula is shown in Fig-
ure 3.1.

[crossing’ <= (req A —crossing),

req <= (pressed A —req),

tlag’ < ((—crossing’) A (—pressed V req')),
tlbg <= ((—crossing’) A (—pressed V req’)),
tlar’ <= crossing,

tlbr' <= crossing,

plag’ <= crossing’,

plbg’ <= crossing’,

plar’ <= (—crossing'),

plbr’ <= (—crossing'),

audio’ <= crossing']

Figure 3.1: An example ladder logic program.

Here we notice that there is exactly one list entry corresponding to each rung of the original
ladder logic program. Also we notice that the assignment to a coil gets translated into an
equivalence between the coil and all constructs occurring on the corresponding rung. We
can see that all output coils are primed and only assigned to once. The last point we notice
is that all primed variables referred to on the left hand side of a rung have previously
been defined in the ladder logic program. This shows that our modelling approach exactly
captures the nature of ladder logic programs used by Invensys.

Chapter 8 Modelling Interlockings and SAT

3.3 Representation via Automata

In the previous section, we introduced a method of modelling the syntax a ladder logic
program using a propositional formula. Given that such a ladder logic program is iterated
continually, we can model the behaviour of the system by considering various variable values
after each execution. Therefore, the propositional formula we obtain via our modelling
approach corresponds to a transition function between states of the interlocking system.
For this reason we introduce an automaton theoretical approach to modelling that allows
us to capture the operation of a Westrace interlocking.

To allow us to formulate an automaton representation of a Westrace interlocking, we shall
first extend the variable sets and notions introduced earlier. We use the two functions
prime and unprime we introduced earlier. These functions enable us to speak about two
versions of variables. One set of these variables, namely the unprimed set, will correspond
to the variables before an iteration of the ladder logic program. The other set, namely
the primed set, will correspond to the new values of the variables after an iteration of the
ladder logic program. To motivate this consider the simple automaton in Figure 3.2.

Figure 3.2: A simple automaton, illustrating the need for primed variables.

If we wish to reason about the dashed transition of the automaton given in Figure 3.2,
then we need to be able to speak about two sets of state variables. One set being the
state variables used as an input to the transition, and one set representing the output
state of the transition. Similarly, if we wish to reason about the execution of a ladder logic
program, then we need to reason about all variables that occur in that ladder logic program.
Given that we want our ladder logic propositional formula to represent a transition between
system states, we need to be able to reason about such pairs of states. That is one state
that defines the inputs and remembered coils that will be used in our transition, and one
state that defines the results of the transition given these inputs. To allow us to speak
about such pairs of states in our automaton, we need to introduce the notion of a paired
valuation. A paired valuation will simply be a combination of two single valuations.

Definition 3.14 (Paired Valuations): Given a set of inputs I and a set of coils C' and
valuations u, p/ : (IUC) — {0,1} we define pusgy/: (IUCUI'UC") — {0,1} where

() w(x) ifxelUuC
€Tr) =
. W (unprime(2')) it el uC z =2

Notice that since p and y’ give values to the same variable set, i.e., I UC, the definition of
paring valuations allows us to change the vocabulary for i/ so that we can speak about the

3.3 Representation via Automata 23

variables I’ U C’. This in turn allows us to speak about pairs of states in our automaton.
This pairing function allows us to define the following automaton representing runs of a
Westrace interlocking system.

Definition 3.15 (Automaton): Given a ladder logic propositional formula p over V,
define an automaton

Ap) = (5, Is, =)
where
o S={u|p:IUC — {0,1}} is the set of states,
o 1 — ' if psp’ | Yp defines the transitions, and

o I, ={y|3u:pukE I usy E Yp} gives the set of initial states, where —I expands
to Ny i for all i € 1.

Remark 3.16: Notice here that 1p does not impose any conditions on the values in I’.
Thus we gain a non deterministic automaton. Also notice that the automaton A(¢p) is
finite as it has 2//YC| states, where I and C' are both finite.

Also, we have the following theorem, which indicates that we can always make a transition
from a state in our automaton.

Theorem 3.17: Given an Automaton A(¢p) for some ladder logic program P, if u is a
state in A(yp), then there exists a p’ such that psu' = ¥p.

Proof. Let u: IUC — {0,1} be a valuation. Define a sequence of valuations vy, v1, ..., v,
such that,
vi: TUCU{d,cy,....d,} —{0,1}

for 0 < j < n, where

vi(c) = ple) forced,
vi(i) = p@) foriel,
and
vit1(ch) = v;(c,) for 1 <k<je el
Vi) = (1) ﬁ t ; for ;11 € C
Finally, define 1//(c) = v, () for ¢ € C and /(i) as arbitrary for ¢ € I. O

Now we have defined our automaton, we shall also define the useful notion of reachability
in an automaton.

Definition 3.18 (Reachable): A pair of valuations pgp’ is reachable with respect to an
automaton A(P) = (5,1, —) for some ladder logic program P, if there exists a series of
transitions g — g1 — -+ — p — p’ such that pg € I.

Chapter 8 Modelling Interlockings and SAT

The usefulness of this notion will become more apparent later in the document, but as an
example automaton gained via this definition, consider the automaton we gain from our
pelican crossing propositional formulae shown in Figure 3.3.

pressed = 0
crossing = 1

req=0
tlag=0

pressed = 1 pressed = 1 pressed = 0

pressed = 1 crossing = 0 crossing = 1 crossing = 0
crossing = 0 req=1 req=0 req=1
req=0 tlag=1 tlag=0 tlag=1

tlag=1

pressed = 0
crossing = 0
req=0
tlag=1

Figure 3.3: An automaton theoretic modelling of the ladder logic program for a pelican
crossing.

This automaton shows all the reachable states of the pelican crossing example ladder logic
program. Initial states are represented using double a double circle. Here we have omitted
unreachable states as in the following chapters we will not be interested in the unreachable
states. Also the diagram would be much larger (22 states!) if all states were included.

3.4 Safety Conditions

Before we begin to discuss verification techniques, we first need to introduce how we will
model properties which we would like to show hold in our system. Here we will only be
interested in safety properties and not liveness properties. That is using the classification
of [MP91] we will only consider properties that say “something bad will not happen”, and
not properties that say “something good will eventually happen”. Previously, work has
been completed [Fok96] to formulate classes of safety conditions for a certain railway. Here
we shall not try to propose classes of formulae, but instead introduce a general scheme
which the safety condition we consider will follow.

In [Kan08], a language was defined for use by Invensys. This language enables the engineers
at Invensys to speak about safety conditions in a fairly informal, non-specific manner. A
tool was implemented to translate safety conditions in this informal language into concrete
conditions in propositional logic. The tool will be covered in more depth in Section 4.3.
Here we define the general format of such a propositional safety condition for a given ladder
logic program.

Definition 3.19 (Safety Condition): A safety condition ¢ for a ladder logic propositional
formula ¥ p over variables V = T UC U (', is defined as:

p € PROP

3.5 Satisfiability

such that for all v € vars(y), it holds that v € vars(yp).

This definition is rather intuitive, and allows for a safety condition to range over pairs
of states in our automaton. That is, a safety condition can speak about both input and
output values of a ladder logic program. Using our pelican crossing ladder logic program
as an example, a safety condition we may want upheld is that “A traffic light always shows
a single aspect”. This would then be captured by the following propositional formula:

(tlagl V tlarl) A not(tlagl A tlarl) A (tlbgl V tlbrl) A not(tlbgl A tlbrl)

Remark 3.20: Notice that this particular safety condition does not speak about any values
from the set C’.

The remainder of this document will now concentrate on showing how we can prove such
formulae hold.

3.5 Satisfiability

Here, we shall introduce the Boolean Satisfiability, commenting mainly on the history of
SAT and some approaches to solving the problem.

A well known problem in theoretical Computer Science is the Boolean Satisfiability (SAT)
problem [BHvMWO09] for propositional logic. The problem can be stated as, given a propo-
sitional formula ¢, does there exist a valuation p for ¢ such that

pE e

The combinatorial complexity of this problem makes it one of the most famous problems in
the P = NP question posed by Stephen Cook in 1971 [Coo71]. The practical and theoreti-
cal implications, one of which will be discussed later, of finding a polynomial time algorithm
for the SAT decision problem, means that many algorithmic approaches [GPFW96] have
been applied to try to solve the problem.

The first such non-trivial approach to solving the SAT problem was given by Davis and
Putnam (DP algorithm) in [DP60]. Shortly after this in 1962, the well known DPLL
(Davis-Putnam-Logemann-Loveland) algorithm was introduced in [DLL62]. This algorithm
is based on the theme of backtracking, and was an extension to the DP algorithm. The
backtracking approach was the main algorithmic method towards solving the SAT problem
up until the introduction of CDCL (conflict driven clause learning) algorithms [MSLMO09]
in the 1990’s. Finally, the DPLL algorithm was enhanced further to include a so called
“look ahead” feature, and now this algorithmic approaches is commonly referred to as look
ahead sat solving [HvMO09].

All of the algorithms we have mentioned above are so called “complete algorithms”, that
is they always return a “satisfiable” or “unsatisfiable” for a given problem. Given that
no polynomial time algorithm for the SAT problem has been found yet, this means that

26 Chapter 8 Modelling Interlockings and SAT

many of these algorithms could take years to complete. For this reason, newer approaches
have also included incomplete algorithms, with the main approach to this problem using
a local search approach [KSS09]. These algorithms may try to solve a given problem for
a given period of time, then simply give up and return a “I don’t know” result. Due to
the nature of the problems which we will use a SAT solver for, these kind of incomplete
algorithms and solvers will be of no use to us. Therefore, we shall mainly use the CDCL
solver MiniSat [min09, ES04], the look-ahead solver OKsolver [Kul08] and the model finder
Paradox! [par09].

Now we have introduced the SAT problem and some SAT solvers, in next chapters we shall
introduce how we can use SAT solvers for the verification of ladder logic programs.

"Which happens to use Minisat as the underlying proof tool.

Chapter 4

A Survey of Verification
Approaches for Ladder Logic

Contents
4.1 Verification oo s e e e e 27
4.2 Verification of Ladder Logic 28
4.3 Verification of Westrace Interlockings — Kanso 08 30
4.4 An Example of Inductive Verification 33

In this chapter, we introduce exactly what it means to verify a ladder logic program. We do
this by first introducing the general verification problem, then showing how we concretely
plan to verify ladder logic. Following this, we introduce some related work, including
a detailed account of work by Kanso [Kan08, KMS08]. In this work, Kanso applies an
inductive verification approach, proposing and developing tools which we have extended
further.

4.1 Verification

Ensuring that a system is correct is a vital part of modern Computer Science. The need for
both correct hardware and software grows greater and greater as the use of control systems
expands. Whether it be verification of interfaces on medical devices [Thi09], or verification
of electronic payment systems [KR09], the use of formal methods and verification is becom-
ing more predominant everyday. The main limitation in the verification of such systems, is
caused by the ever growing size and complexity of computer systems, leading to verification
problems that just can not be solved feasibly with current techniques. The general goal of
verification, is to show that a computer system does or does not exhibit certain properties.
Therefore verification techniques provide us with a way to reason about system behaviour,
and often gives us new sights into how a system actually behaves.

27

Chapter 4 A Survey of Verification Approaches for Ladder Logic

4.1.1 Classical Verification

Verification of computer systems can be split into two main fields, verification of soft-
ware [Kro09] and verification of hardware [Kro99]. In the former, it is usually the code
from the software that is used as a model, or a model may be constructed for the system
from a users point of view. Whereas the latter, usually consists of modelling the given
hardware device using a certain modelling language such as CSP [Hoa85], Casl [Mos04] or
some form of timed logic [PP06].

Overall the general verification process can usually be summarised using the following three
steps:

1. Construct a model of the software or hardware to be verified.

2. Using the original system specification (usually given in natural language), derive
properties that the system should/should not fulfil.

3. Perform a verification technique to check if the model of the system meets the desired
properties.

In step one of the process, a common technique is to construct some form of automaton
theoretic model [PP06]. Then the verification problem is an analysis over the states of
the constructed automaton. This is in line with the modelling approach we have taken for
ladder logic in Chapter 3. Next, the properties to be upheld by the system are specified
using some form of logical language. Typically, properties are specified using a temporal
logic [MP91] allowing aspects such as time to be captured within the conditions. Here, as
shown in Chapter 3, we have use propositional logic simply because it is a powerful enough
language to capture all of the properties Invensys are interested in. Finally, the third step
of the process, the verification step, is usually completed using tools such as model checkers
or theorem provers. In this project we will use the highly successful technique of SAT-based
model checking [Kan08, GRV08, BC00, SSS00]. We will concentrate on such techniques for
the remainder of this document.

4.2 Verification of Ladder Logic

We now show how the three main steps of verification outlined above, can be applied to
ladder logic. To do this we shall illustrate with examples how we can check to see if a given
safety condition holds in our automaton model of a ladder logic program. Finally, we will
look into some related approaches to the verification of ladder logic.

In Chapter 3, we have shown how we can model a ladder logic program as a propositional
formula, which in turn is used as a transition function for an automaton. We have also
explained the format of safety conditions and how they can also be modelled using propo-
sitional formulae. Therefore given a ladder logic program P, and a safety condition ¢, we
want that ¢ is upheld in all reachable system states, that is:

Definition 4.1 (Verification Problem): Given a ladder logic program P and given a safety

4.2 Verification of Ladder Logic 29

condition ¢, we say that

AlWp) E e
iff ¢ holds for all reachable states in A(¢¥p). Here
e 1, is a propositional formula modelling the ladder logic program P.

e A(yp) is the automaton constructed following the methods of Chapter 3 using ¥p as
a transition function.

e ¢ is a safety condition.

To show this, it suffices to show that for every reachable pair of states p; ' in A(¥p) we
have:

' .

To illustrate this example consider the following automaton constructed from our pelican
crossing ladder logic program.

pressed = 0

4090 Unreachable crossing = 1
States req=0
pressed = 1 pressed = 1 pressed = 0 tlag=0
pressed = 1 crossing = 0 crossing = 1 crossing = 0
A crossing = 0 req=1 req=0 req=1
req=0 tlag=1

tlag=1 tlag=0

tlag=1
pressed = 0
crossing = 0
req=0
tlag=1

Figure 4.1: An automaton showing reachable states for our pelican crossing example.

Here we have 6 states that are reachable. This means that as long as the interlocking starts
correctly in an initial state, then the interlocking system will never reach a state other than
these 6. Therefore, to show that a safety condition holds for an entire ladder logic program,
we have to show that it holds in all reachable states of our automaton. Algorithms and
techniques to find all such pairs of reachable states and to check them against the safety
property will be discussed in Chapters 5 and 6.

4.2.1 Related approaches

We now move on to discuss some previous approaches to the verification of ladder logic
programs. We will discuss three approaches, the last of which we shall direct most attention
to, as the tools developed in this approach will form the basis of our approach.

The earliest approach which we will look into is that of Wan Fokkink and Paul Hollingshead
in [FH98|. In this article, Fokkink and Hollingshead describe the role of control tables within

Chapter 4 A Survey of Verification Approaches for Ladder Logic

railway signalling, and show how such control tables are encoded into ladder logic programs.
They show, in an approach similar to [Kan08] and ours, how a ladder logic program can be
modelled using a propositional formula. They then consider how certain invariants can be
used to strengthen the propositional model. Here we shall not focus on such invariants, but
just comment later about some invariants that could be used to improve the verification
process. Finally, a so called slicing algorithm is presented (without proof of correctness)
and it is shown how such an algorithm can be used to reduce the complexity of verification.
In chapter 7, we will discuss a similar slicing algorithm, giving both an implementation of
such an algorithm and a correctness proof that the slicing algorithm is correct with regards
to our verification method.

The next approach to verification of ladder logic programs we comment on is that of Zoubek
et. al. in [ZRKO03]. In this work, a ladder logic program is modelled using a finite state
timed automaton, and then the Uppaal [upp09] model checker is run on the automaton
with a given property to be verified. We have chosen a different modelling approach, as the
ladder logic programs used by Invensys do not explicitly use time. Therefore, we do not
need to add the complexity of time to our automaton model. The paper then continues to
give a detailed description of example verification scenarios, and shows how the approach
outlined can be successfully applied.

Finally we will now cover, in some detail, a third approach to verification.

4.3 Verification of Westrace Interlockings — Kanso ’08

Recently, in 2008, a highly successful approach to SAT-based verification of ladder logic
programs was given by Kanso in [Kan08, KMS08]. Also working in co-operation with
Invensys, Kanso proposed and implemented a tool to perform induction based verification
of ladder logic programs for Westrace interlockings. The approach, which we will now
outline, was successfully applied to the verification of a small real world interlocking.

4.3.1 The Modelling Approach and Verification Process

The modelling approach taken by Kanso, was highly similar to the modelling approaches we
have already mentioned. A ladder logic program was modelled as a propositional formula,
and safety conditions were modelled using first order formulae. Here we note that Kanso
implicitly used the notion of a finite automaton, refraining from an explicit construction
of an automaton corresponding to a ladder logic program. In his thesis, Kanso splits the
problem of verification into two main parts, both of which are illustrated in Figure 4.2.

e Problem 1 — Verification Method
The first problem that is tackled by Kanso, is to come up with a suitable automatic
verification technique. To solve this problem, Kanso, using Haskell [Hut07], imple-
ments a parser for ladder logic programs. This parser, given a ladder logic file used
by Invensys, creates a propositional formula in an abstract syntax form. From this
point on we shall use ¥ p to represent the formula gained from parsing a ladder logic

4.8 Verification of Westrace Interlockings — Kanso 08

31

program. Next, the formula ¥ p is combined with a given safety condition ¢, the
generation of which we will comment on later, to give some formulae to be checked
for satisfiability. Using our automaton modelling, the formulae produced by Kanso
correspond to the following inductive verification process.

1. Base Case: psu' = ¢ for all p® p, ' where p° = =1, pPsu = p and psp’ =
¥p. That is, given the initial conditions of the ladder logic program are met,

after two execution cycles of the ladder logic program, we have that the safety
condition is upheld.

2. Induction Step: For all p, p/, 1" with p; p' = p holds: If ;' = ¢ and ¢/ 1" =
Yp then p'; u” = . That is, given that the safety condition holds for some
execution of the ladder logic program, then we have that the safety condition is
still upheld after the next iteration of the ladder logic program.

Interlocking Ladder Logic Railway Topology Informal Safety Condition

T
.

2 O
' For all
wos, /| iz L\, Tio track
t +— —+
Lm 5 ‘ points...

C)
Initial Condition - I(W0) e(Wn,Wn + 1)
and Transition Formula - T(Wn,Wn + 1) Safety Condition

4 @

Successful Automated Verification:
1. ~(I(WO) AT(WO,W1) AT(W1,W2) = (W1, W2)
2.4(e(WO0,W1) AT(W1,W2) = o(W1,W2)

If 1 & 2 are not satisfiable then output “safe”

Figure 4.2: Illustration of the modelling approach taken by Kanso.

Obviously if these two conditions are shown to hold, the the ladder logic program
will have been verified, via induction, with respect to the given safety condition. To
show these formula hold, Kanso uses a SAT solver, namely the OKsolver [Kul08],
as the underlying proof tool. As we have seen, a SAT solver returns whether or
not a formula is satisfiable. Hence if we were to formulae corresponding to the above
conditions to a SAT solver, then as long as there is at least one pair of states satisfying
each formula, the SAT solver will return satisfiable. However this result is of course
useless to us as there still may exist other pairs of states where the safety condition
is violated. To solve this issue, the formulae involved are negated. This means that
if the SAT solver now returns satisfiable, then a pair of states that violate the safety
condition has been found. Therefore to verify a property successfully, we want the
SAT solver to return unsatisfiable. Finally, if a counter example was found, i.e.,
one of the negated formulae is satisfiable, then Kanso’s tool would give a pictorial
situation illustrating the counter example. Figure 4.2 illustrates the approach taken

32

Chapter 4 A Survey of Verification Approaches for Ladder Logic

by Kanso. The propositional formulae presented in the diagram are those relating to
the conditions stated above. For more details on these formulae, see Section 5.2.

e Problem 2 — Generating Safety Conditions The second problem which Kanso
solves, is that of generating safety conditions. Kanso provides Invensys with a tool
into which they can enter informal safety conditions. The informal safety conditions
are required to follow certain syntax rules outlined by Kanso. This provides an easy
way for the engineers at Invensys to describe safety properties, and also allows the
safety condition to be translated into a logical form. An example of such a safety
condition would be, “For all points p (normal(p))”, which expresses that all points
specified in the track plan should be in normal position. Once such a safety condition
has been entered, the tool automatically translates the condition into a first order
logic formula, before translating this first order logic formula down into a series of
propositional formulae. During this process, all variables are instantiated to contain
actually names of variables within the ladder logic program. This is possible as the
first order formulae are always considered over a finite model given by the railway
topology. For example, in the above safety condition “For all points p” will be
instantiated with the name of each point occurring in the railway topology. The final
series of obtained propositional formulae can then be used as safety conditions for
problem 1.

The combination of these two problems yields a full tool for the verification of ladder logic
programs. Again, Figure 4.2 shows the internal structure of the final tool.

Overall, the merits of the approach by Kanso are clear:

1. The verification of a small interlocking ladder logic program is within the range of
only minutes.

2. In his thesis [Kan08], Kanso gives a series of safety conditions that have been verified,
either successfully, or with the generation of a counter example situation.

3. The whole process is automated into a single tool.

Even though there was a high level of success, the approach taken by Kanso could be
improved further. One problem with the tools created, is that in places they are coupled
to the single interlocking that was being verified. The second problem is that the tools
were creates using a varied code base, consisting of several languages such as Haskell,
Prolog and Java. This makes the maintenance and debugging processes highly difficult.
The problems given above are mainly based around how the verification software that has
been implemented, and with time could all be successfully solved, e.g., making the software
generic is possible through various extensions to the existing tools, but now we shall move
our attention to another, more fundamental issue with this approach.

4.3.2 Unreachable States and Error Traces

Using the inductive scheme presented by Kanso, the verification process is open to errors
due to unreachable states. If we consider the inductive step used in the verification process,

4.4 An Example of Inductive Verification

33

6 Safety condition violated — Trace \
required.
e Safety condition violated — State
unreachable
@ holds

Figure 4.3: Tllustration of state space and violating states.

Induction Step: For all p, p/, p” with p; p' = 1p holds: If p; ' = ¢ and p/s " = ¢p then
win = .

we see that it considers all states where the safety condition ¢ holds. It does not consider
whether or not these states are reachable from an initial configuration of the system. This
can be seen more clearly in Figure 4.3. This leads to the problem that sometimes the
verification process returns a pair of states which violate the safety condition, but this
result is incorrect. This is because these states can never be reached in a concrete system
run. To solve this problem, either a different verification algorithm will be required, namely
one that does not take an inductive approach, or certain invariants could be added to the
verification process. We shall not consider invariants any further here, as it is apparent
that strong enough variants are simply unknown to the engineers at Invensys. Another
fundamental problem with this inductive approach, is that when a valid counter example
is found, the state of the system for the counter example can be output by the software,
but no error trace to how this state occurred can be given. Thus, in order to exclude such
violations, the engineers have to study these examples to quite a detail. In practice, they
excluded all of them. However, this turned out to be a rather time consuming and also
error prone process. Hence, producing such an error trace is something that the system
engineers at Invensys are highly interested in as it would enable them to find the cause of
the problem much more easily. To solve the problem of producing an error trace, again a
different verification approach will be needed. A more iterative approach to verification is
what we will now discuss in the following chapters.

4.4 An Example of Inductive Verification

To illustrate the concept of inductive verification and the problems it poses, we shall now
give an example verification of the pelican crossing ladder logic program. For purposes
of illustration we have used the CASL specification language [Mos04], along with HETS,
the Heterogeneous Tool Set [HET09]. Here we note that the final tool we provide for the
verification of ladder logic does not use CASL or HETS, hence we will not discuss the tools

Chapter 4 A Survey of Verification Approaches for Ladder Logic

any further. The full CASL specifications of all examples given are included for reference
in the appendix.

Considering our pelican crossing example, we have parsed the ladder logic into a propo-
sitional formula, and specified this propositional formula as a transition in CASL. The
specification for the transition function is given in Figure 4.4.

spec TRANSITION[STATEQ]|[STATEL] =
crossingl < req0 N — crossing
reql < pressed0 N — req0
tlagl < — crossingl N (— pressed0 V reql)
tlbgl < — crossingl A (— pressed0 V reql)
tlarl < crossingl
tibrl < crossingl
plagl < crossingl
plbgl < crossingl
plarl < — crossingl
plbrl < — crossingl
audiol < crossingl
end

Figure 4.4: Transition function specified in CASL.

From Figure 4.4 we can see that the specification of the transition function is parametrised.
This means that the transition specification can be used as a transition between any pair
of states in our automaton. Also specified in CASL, as shown in Figure 4.5, is the initial
conditions which are used in the definition of our initial states. This specification describes
that initially all variables in the ladder logic program should be set to false.

Finally, it remains to specify the safety condition which we would like to be upheld. Here
we use the same safety condition as given in Chapter 3, namely that for the traffic lights in
our pelican crossing example, we have that “A traffic light always shows a single aspect”.

spec INITIAL[STATEOQ] =
- pressed(

end

Figure 4.5: Initial conditions specified in CASL.

To show that this safety condition is upheld, we attempt to use the inductive verification
approach. To do this, we have specified both the conditions, i.e., the base case and inductive
step, used by Kanso. The CASL specification of the base case is given in Figure 4.6, and
the CASL specification of the inductive step is given in Figure 4.7. Here we note that
instead of representing state variables using unprimed and primed versions, we use 1 and
0 respectively.

4.4 An Example of Inductive Verification

The specification of the base case condition in Figure 4.6 shows that we firstly import
specifications of the variables to be used within verification conditions, i.e., State0 and
Statel. Tt then shows that we instantiate the initial conditions of the system. That
is we set all of the variables in State0 to be false. Next the specification shows that
we instantiate the transition specification with the variable set State0 and Statel. This
represents a transition in our automaton from StateQ to Statel. Similarly we see this
transition between Statel and State2. Finally, we see a then %implies statement which
tells us that the axioms stated after this are to be proven from the given specifications.
After this statement comes the specification of the required safety condition.

spec KANSOCONDITIONONE =
STATEO

and STATEL

and STATE2

and INITIAL[STATEQ]

then TRANSITION[STATEQ]|[STATE]]

and TRANSITION
[STATE] fit
req0 — reql crossing0 +— crossingl pressed0 — pressedl
tlag0 — tlagl tlbg0 — tlbgl tlar0 — tlarl tibr0 — tlbri
plag0 +— plagl plar0 — plarl plbg0 — plbgl plbr0 — plbri
audiol — audiol|
[STATE2 fit
reql — req2 crossingl +— crossing? pressedl +— pressed?2
tlagl — tlag2 tlbgl — tlbg2 tlarl — tlar2 tibrl — tibr2
plagl — plag2 plarl — plar2 plbgl — plbg2 plbrl — plbr2
audiol — audio2]

then %implies
(tlagl V tlarl) A = (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tlibrl)

end

Figure 4.6: Base case verification condition specified in CASL.

In the same style as the base case specification, Figure 4.7 shows the specification of the
inductive verification step. In this specification, we notice that there is no longer an instan-
tiation of the initial specification. Instead, there is a specification that describes that the
state represented by the variables in StateQ is a safe one. Then, it is specified that there is
a transition from this safe state into a new state Statel via instantiation of the transition
specification. Finally, we once again see a then %implies statement which is followed by
the a specification that the safety condition must hold in the new state.

Using the features of HETS, we can now use the MiniSat solver to try to prove these two
condition. Figure 4.8 shows that the base case verification succeeds, whilst verification of
the inductive step fails. The screenshots in Figure 4.8, show the proof windows in Hets.
The state of each proof is indicated by the “Status” field. The Figure shows that, firstly

Chapter 4 A Survey of Verification Approaches for Ladder Logic

the base case condition has been proved, where as secondly, the inductive step has been
disproved.

spec KANSOCONDITIONTWO =
STATEQ

and STATEL

and STATE2

then (tlag0 V tlar0) N — (tlag0 A tlar0)
A (tlbg0 Vv tibr0) N — (tlbg0 A tlbr0)

then TRANSITION[STATEO|[STATE]]

and TRANSITION
[STATEL fit
req0 — reql crossing0 +— crossingl pressed0) — pressedl
tlag0 — tlagl tlbg0 — tibgl tlar0 — tlarl tlbr0 — tibri
plag0 — plagl plar0 — plarl plbg0 — plbgl plbr0 — plbri
audiol — audiol|
[STATE2 fit
reql — req2 crossingl +— crossing?2 pressedl +— pressed2
tlagl — tlag2 tlbgl — tlbg2 tlarl — tlar2 tibrl — tibr2
plagl — plag2 plarl — plar2 plbgl — plbg2 plbrl — plbr2
audiol — audio2]

then %implies
(tlagl V tlarl) A = (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tibrl)

end
Figure 4.7: Base case verification condition specified in CASL.
Goals: Options: Goals: Options:
[+] Initial => phi X TimeLimit [T A% 011 X Timelimit [
Extra Options: Extra Options:
Save dimacs Fle Prove Save dimacs File Prove
Results: Results:
Status h Status Disproved
Used Axioms Az 0 Used Axioms
Az 1 |
Ax_2
Ax_3
Ax_d
Ax_S £ £
W Show Details W Show Details
minisat Batch Mode: minisat Batch Mode:
Options: Options:
. = Run . al Run
Time Limit 20 = TimeLimit 20 =)
Extra Options: Extra Options:
Current goal: -- Current goal: --
Global Options: Glohal Options:
W include preceeding proven therorems in next proof attempt W include preceeding proven therorems in next proof attempt
Help | Save Prover Configuration | Exit Prover | Help | Save Prover Configuration | Exit Prover |

Figure 4.8: Inductive verification approach fails - The base case verification succeeds, where
as the inductive step verification fails.

4.4 An Example of Inductive Verification 37

This result implies that there is a problem with the ladder logic program for our pelican
crossing example. However a simple manual analysis of the automaton in Figure 4.1 shows
that the safety condition does in fact hold in all reachable states of the automaton'. There-
fore, the failure of the verification is due to an unreachable state - although the program
is correct, Kanso’s approach is incapable of proving this.

To improve the verification process, we have to take into account the notion of reachability.
Over the next two chapter we will introduce and apply verification approaches to solve this
issue. The approaches will also result in a counter example trace being produced if the
verification of a given property fails.

!This will also be shown via model checking in Chapter 6.

38

Chapter 4 A Survey of Verification Approaches for Ladder Logic

Chapter 5

Bounded Model Checking

Contents
5.1 The Origin of Model Checking 39
5.2 Representing State Sequences 0000 41
5.3 Applying Bounded Model Checking to Ladder Logic 43
5.4 Example Application of Iteration Algorithms 45

In this chapter, we introduce the main verification technique which we have applied to verify
ladder logic programs for interlockings. We begin by introducing the well known field of
model checking via an historical overview. We discuss why model checking is required
and comment on the success of model checking approaches. We continue to describe a SAT
based bounded model checking algorithm, showing how it can be applied to our verification
problem via an example application. Finally we state some limitations of bounded model
checking as a verification technique.

5.1 The Origin of Model Checking

Model checking [BK08, CGP99] is a formal verification technique that arose from the need
to verify concurrent programs [Cla08]. Up until the introduction of model checking in
1981 [CES81] the main technique of verify a system was to construct hand written proofs
the properties were upheld by the system in question. Obviously the scalability of such an
approach came into question, and in [CE81] Edmund Clarke and Allan Emerson propose
a solution to this using a much more model theoretic and mechanised approach. This
approach basically consisted of given a finite transition system M, and given a formula F
(usually a temporal formula), systematically check for each state s in the given model if
s = F. Of course if this can be shown true for all states in the finite transition system,
then M = F. Clarke and Emerson also wanted that if there was a state s such that s = F,
then the model checking process would return a counter example trace. In [CES81], the
first algorithm was proposed to solve this problem. Here we will not look further into this
algorithm, but will instead see an algorithm based on SAT solving in Section 5.3.

39

Chapter 5 Bounded Model Checking

The advantages of using such a model checker soon become apparent, the biggest of which
being that:

e The process can be fully automated.
e If a property does not hold, then a counter example trace can be generated.
e The model checker process required no complicated proofs to be written.

Most interesting for us is the ability to fully automate the process, and to create not
only counter examples but counter example traces. Both of these properties fulfil the
requirements of out industrial partner. Given these advantages, much interest was and still
is being taken into the area of model checking. The biggest drawback of model checking,
arises from the state space explosion problem [CGJT01]. Consider as an example our
pelican crossing example. The ladder logic program contains only 11 variables, but the
automaton contains 2! states. Now consider a typical interlocking ladder logic program
for a small railway station. Such a ladder logic program contains around 300 to 500
variables. This causes the automaton to have up to 23%° and 2°°° hundred states. Given this
exponential increase in automaton size, the verification time will also increase exponentially.
Therefore most of the current research in the field of model checking deals with trying to
reduce the state space explosion problem, most commonly through some form of abstraction
technique [KP07]. How we have applied techniques to help tackle the problem of state space
explosion will be covered in Chapter 7.

5.1.1 Bounded Model Checking

As a result of the state space explosion problem, the full verification of complex system
is often not feasible via model checking. This is the reason that in [BCCZ99] Armin
Biere et. al. introduce a technique which allows a bound to be put on the model checking
process. To do this, the traditional approach of using binary decision diagrams [Ake78]
to represent the underlying state space of the automaton is removed and a new approach
using SAT solving is proposed. Then, a bound is placed on how many transitions should be
considered within the automaton when performing the verification process. This of course
makes the procedure incomplete, as only states reachable within this bounded number of
transitions are considered. Hence unless all states of the system are reached within this
bounded number, the system may still be unsafe. A bounded model checking algorithm
only ensures safety up to this given bound. However, suggestions are also given to make
the procedure complete, such extension will be discuss and applied to the verification of
ladder logic in Chapter 6. The paper itself outlines an entire sound basis for the use of
SAT procedures in model checking, and shows how such a procedure reduces the effect
of the state space explosion. The paper also illustrates that counter example generation
is usually quicker using SAT based model checking over traditional model checking with
binary decision diagrams. Finally, a comparison of concrete verification results between
non SAT-based and SAT-based model checkers is given.

The introduction of a bound to the model checking process, along with the increased effi-
ciency of the process due to the introduction of SAT solvers, meant that model checking

5.2 Representing State Sequences 41

became widely used within industrial applications [CESS08, ADK*05]. The main applica-
tion of bounded model checking within industry is to find counter examples whilst testing
systems. Given the high complexity of the interlocking systems we would like to verify, and
given that we would like counter example traces to be produced, we have chosen to take
such a SAT-based verification approach.

5.2 Representing State Sequences

The model checking approaches we discuss in the following sections, all rely upon the use
of a SAT solver. Thus, we have to give a representation of the state sequences of the
automaton under consideration using propositional logic formulae. To do this we define
the following variable sets.

Definition 5.1 (Variable Sets): Given a set I of input variables, and set C of coils, we
define variable sets:

W, = o)y 1)
where
o CU) ={cl)|ceC}and
for j € Z.
A sequence Wy, W1, Ws, ... of these variable sets represents a state sequence of an automa-
ton A(%). For notational convenience, we use the superscript () to produce fresh variables.
We write W" for Wo U Wi U---UW,, [W;/(1UC)] to denote the substitution where all

superscripts are removed, and [Wj41/(I’ U C")] for the substitution where all superscripts
are replaced by primes.

To allow us to map between states in our automaton and the corresponding variable sets,
we introduce the following two functions:

Definition 5.2 (seq): Given a valuation £ : W™ — {0, 1}, we define

seq(&) =< [, i1 - - - fn >

where
ug: TUC —{0,1}
i— pp(i) = {(i(k))
¢ pr(c) = &(ch)
for 0 <k <n.

Here, seq gives a state sequence that is represented by a series of propositional variable
sets. The second function we define is used for the reverse translation.

Chapter 5 Bounded Model Checking

Definition 5.3 (concat): Given a state sequence < pig, fi1, - - - , i, >, we define
concat(< po, 1y -« -y o >) : W — {0,1}

o i) (i)
o ¢ pg(c)

for 0 <k <n.

Using these variable sets, we can define a propositional formula for state sequences in our
automaton. Such formulae will be used within the model checking algorithms we propose.
Firstly, we represent a transition using the notation

T(W;, Wjta) = [W; /(T U O)[Wja /(I U CT)].

Then we define a series of transitions:

Definition 5.4 (Series of transitions): Let ¢¥p be a ladder logic formula. We define the
propositional formulae

Init=(N\ —i) ANT(W_1,Wp) T.= N\ TW;,Win)
ier(-1) 0<j<n—1

where n > 0.

Given a ladder logic formula ¥ p, then the formula InitA\T;, is “satisfied” exactly by all state
sequences g, f, - - -, by, of A(p). More formally: Given a state sequence pg, fi1, .- ., fn
we construct, using concat, an valuation £ : W_1 UWp U ---UW,, — {1,0}, where state f;
gives the interpretation of W; for 0 < j < n, i.e. £(i0)) = p;(i), i € I, and £(cW)) = p;(c),
ce C; E(iY)=0,i €I, and £(c~Y) such that we reach ug via ¢p. For this & holds:
¢ = Init N'T,,. Conversely, given a with £ = Init A T,, one can decompose it, using seq to
a state sequences g, (1, - - ., iy of A(p).

With these notations in place we can define safety at a specific point in a sequence
WO7 Wl) W27 s

Definition 5.5 (Safety at step n): Let ¢ be a safety condition for a ladder logic formula
Yp, i.e., vars(p) C ITUC UC’. We define the propositional formula

on = [Wn1/(TUC)[Wy/(IT'UC)],

where n > 0.

If this formula holds, then we know that the safety condition ¢ holds for the n* transition.
We continue by using these formulae to give a bounded model checking algorithm for ladder
logic programs.

5.8 Applying Bounded Model Checking to Ladder Logic 43

5.3 Applying Bounded Model Checking to Ladder Logic

Given the problems arising from the inductive verification approach taken by Kanso (see
Section 4.3), we now present algorithms to solve these issues. The algorithms we present use
the automaton theoretic modelling we have given in Chapter 3, where to gain the transition
function we make use of the ladder logic parser given by Kanso in [Kan08]. Like Kanso,
we will also continue to use the successful underlying proof technology of a SAT solver.
The algorithms we have used are adaptations of the bounded model checking algorithms
given in [SSS00]. Overall we propose two main algorithms which allow the of elimination
of unreachable states, and the production of full counter example traces.

5.3.1 Forwards Reachability in k£ Steps

The first algorithm which we give, shown in Figure 5.1, performs a forwards iteration of
the state space. That is, given a automaton A(yp) for some transition function ¢p, along
with some safety condition ¢. The algorithm will check that ¢ holds for up to k transitions
from an initial state of the system. Within the algorithm, we make use of the following
two formulae:

Initial = Init N T (Wy, Wh) = o1 and Transition, = T,, = .

Here Initial describes that for all possible initial sates p we have that p = . Transition,
describes that given any state sequence of length n in the automaton, that ¢ must hold
throughout this state sequence. Below we give a bounded model checking algorithm based
on these formulae.

Jg—1

if —Initial is satisfiable return error trace

j—j3+1

while j < K do
if = Transition; is satisfiable return error trace
J—J+1

return "K-Safe”

Figure 5.1: K-step forwards iteration algorithm.

The first step of the algorithm is to initialise a variable j to be one. The variable j will now
be used to count how many transitions have been taken in the automaton. The next step
in the algorithm is to compute all possible initial states of the automaton, i.e. the state
sequence encoded by Initial. As Initial also encodes that ¢ must hold in these states, we
then check, using a SAT solver that —Initial holds. In the next step the algorithm begins to
iterate through the state space. At each iteration, the algorithm checks that —Transition;
holds for the relevant j. This corresponds to checking that the safety condition ¢ for all
possible state sequences of length j If a state is found to violate the safety condition, then
a counter example trace to this state will be returned. If no such state is found, then the

Chapter 5 Bounded Model Checking

algorithm will continue to compute until the bound k is reached. If k is reached then the
algorithm returns that the system is “k-safe”.

Obviously this algorithm removes the possibility of finding unreachable states that violate
the safety condition, as the only states visited by the algorithm are the states that can
be reached from initial states of the system and a series of transitions defined by the
ladder logic program itself. Also the iterative technique taken by the algorithm gives us
the ability to produce an error trace if a state that violates the safety condition is found.
The issue that the proposed approach immediately raises is that the number of calls to
the sat solver in this algorithm is significantly higher than with the approach by Kanso.
The inductive verification by Kanso only makes two calls to the SAT solver, one for the
initial condition and one for the inductive step. Whereas the algorithm we propose makes
a call for every iteration of the algorithm. If the SAT solving times are large for each
problem then this could begin to cause problems, especially as k increases. To combat this,
when implementing the algorithm, instead of making many calls to the SAT solver, we
combine the calls. That is we make one call, namely “—(Transition; A - -- A Transitionji;)”
is satisfiable, for [> 1 to the SAT solver.

We now give a backwards reachability algorithm which is also based on this approach.

5.3.2 Backwards Reachability in k Steps

The second algorithm we give to solve the problem of verification of ladder logic programs is
a slight variation of the first algorithm. In a similar manner to the first algorithm, the new
algorithm will iterate through the states a automaton, but this time in a backwards manner.
That is, instead of starting the iteration process from an initial state of the automaton,
the iteration process shall start in an error state. Then the algorithm will execute in a
backwards manner, terminating either when a initial state of the automaton is reached, or
when the the k£ bound is reached. This algorithm is given in Figure 5.2.

Here, the concept of starting in a violating state may seem a strange one, as usually we
want to find if any violating states exist in our automaton. Although if we consider this
approach as an extension to the inductive approach taken by Kanso, then things become
clearer. Firstly, Kanso’s inductive verification approach can be applied, then if a counter
example is found, this counter example can be used as a starting state for this backwards
iteration algorithm. This would enable the engineers to determine if the counter example
was reachable or not, and if it was, then a counter example trace would also be provided
for them by the algorithm.

To allow us to formulate an algorithm for this, we define the following,

TBacky, n, = /\ T(W;, Wit1)

m<i<n—1

which represents a series of m transitions backwards from some state occurring at point n.
Then we define,
Violation, = T(Wy—1,W,) = —p, and

5.4 FEzxample Application of Iteration Algorithms 45

TransitionBacky, , = Violation, N\ TBacky, ,, = —Init.

where m,n > 0 Using these notions for backward transitions, we can define the following
backward iteration algorithm.

[«— violating path length

J—1

while 7 < K do
it TransitionBack;; is satisfiable return error trace
j—j+1

return ”"K-Safe”

Figure 5.2: K-step backwards iteration algorithm.

From this point onwards, we ensure that the solutions we propose and apply in Chapter 6
and Chapter 7 also apply to such a backwards approach.

5.4 Example Application of Iteration Algorithms

To show how our iterative approach to verification is successfully in both excluding unreach-
able states and giving counter example traces, we now give an example of its application to
the pelican crossing ladder logic program. As in Chapter 4, we have used the CASL spec-
ification language [Mos04], along with HETS, the Heterogeneous Tool Set [HET09]. Also,
full CASL specifications of all examples given are included for reference in the appendix.

5.4.1 Forwards Reachability - Incorrect Ladder Logic

spec TRANSITION[STATEQ]|[STATEL] =
crossingl < req0 N\ — crossing0
reql < pressed0 N — req0
tlagl < — crossingl
tlbgl < — crossingl N\ — pressed(
tlarl < crossingl
tlbr1 < crossingl
plagl < crossingl
plbgl < crossingl
plarl < — crossingl
plbrl < — crossingl
audiol < crossingl
end

Figure 5.3: An Incorrect transition function specified in CASL.

46

Chapter 5 Bounded Model Checking

Firstly, we shall consider the production of counter example traces when verification fails.
To do this we consider an incorrect version of the pelican crossing ladder logic program
as given in [Kan08]. The CASL specification of the transition function obtained from this
incorrect ladder logic program is given in Figure 5.3.

spec FORWARDSITERATION =
STATEQ

and STATE]

and STATE2

then TRANSITION[STATEQ]|[STATE]]

and TRANSITION
[STATEL fit
req0 — reql crossing0 +— crossingl pressed() — pressedl
tlag0 — tlagl tlbg0 — tlbgl tlar0 — tlarl tibr0 — tlbri
plag0 — plagl plar0 — plarl plbg0 — plbgl plbr0 — plbri
audiol — audiol]
[STATE?2 fit
reql — req? crossingl +— crossing?2 pressedl +— pressed2
tlagl — tlag?2 tlbgl — tlbg2 tlarl w— tlar2 tlbri — tibr2
plagl — plag?2 plarl — plar2 plbgl — plbg2 plbrl — plbr2
audiol — audio2]

then %implies
(tlagl V tlarl) A = (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tlibrl)

(tlag6 V tlar6) N = (tlag6 A tlar6) A (tlbg6 \V tlbro)
A — (tlbg6 A tbr6)

end

Figure 5.4: Forward iteration verification approach specified in CASL.

In a similar manner to Chapter 4, a specification capturing the initial conditions of the
system has also been created. This can be found in the Appendix. We have also created
a specification for our new iterative verification approach, a snippet of this specification is
given in Figure 5.4. In this specification, we use the CASL keyword fit. This is used to
perform a substitution of variables, to allow the reuse of the specified transition function.

This specification shows how we encode a series of transitions using the instantiation of
the transition specification over different variable sets. In the example above, a total of
five transitions are made, some of which have been removed to shorten the presentation
of the example. Also we see that as with the inductive approach, we have imported the
specification outlining the initial conditions. Finally, after the then %implies statement,
we see a series of conditions to be proved. Here there is one safety condition referring to

5.4 FEzxample Application of Iteration Algorithms 47

each state visited along the transitions taken through our automaton. Figure 5.6 shows
that the verification of the second transition fails in Hets.

Given that this verification fails, we are able to construct a counter example trace. The
counter example trace below has not been created using Hets, as the tool does not cur-
rently support it. The counter example trace has been generated from the model finder
Paradox [par09]. This tool is the what we use later as part of our implementation of a
verification process for ladder logic programs.

[pressed0=1, crossing0=0, req0=0, tlagO=1,

tlbg0=1, tlar0=0, tlbr0=0, plag0=0, plbg0=0,
plar0=1, plbr0O=1, audio0=0, pressedl=1, crossingl=0,
reql=1, tlagl=1, tlbgl=0, tlarl=0, tlbri=0,

plagl=0, plbgl=0, plari=1, plbril=1, audiol=0]

Figure 5.5: A generated counter example trace.

Goals: Options:

F1T I TameLimit [z0 ill
12 Extra Options:
[173 2
HT4 I
FI1T5 Save dimacs Fle | Prove |
[1T8
Results:
Status Disproved
Used Axioms
4
W Show Details |
minisat Baich Mode:
Options:
af Run |
TimeLimit 20 =
= Batch mode finished
Extra Options:
Current goal: —

Global Options:
W include preceeding proven therorems in next proof attempt

Help | Save Prover Configuration | Exit Prover |

Figure 5.6: Forwards reachability - verification of incorrect ladder fails.

As we can see from the counter example trace in Figure 5.5, values have been given for
each execution of the ladder logic program, starting from the initial conditions of the
system, going all the way through to where the counter example has occurred, namely
after one iteration. This kind of trace provides the engineers at Invensys with much needed
information for the debugging process. Obviously a similar trace can also be constructed
using our backwards iteration approach, only this trace would begin at an error state and
end in the initial state.

Chapter 5 Bounded Model Checking

5.4.2 Forwards Reachability - Correct Ladder Logic

In the previous section, we have shown how both the forward and backward iteration
approaches we have proposed can successfully yield a counter example error trace when an
error is found. Here we shall show that the forward iteration approach we have given can
also verify a ladder logic program if the ladder logic upholds the safety condition. To do
this, we will once again consider the correct ladder logic program we have been using as
a running example throughout. The specification of the transition function in CASL has
already been given in Figure 4.4. Also, the CASL specification of the forwards iteration
approach is similar to that given in Figure 5.4, only we instantiate the new correct transition
function instead. The full specification can be found in the appendix, as here we shall just
show the result of the verification, and give some comments on it.

Figure 5.7 shows the successful verification of up to five transitions, i.e., six states, of the
correct pelican crossing ladder logic program. Through manual meta reasoning, i.e., by
considering the maximum length, loop free series of transitions required to check every
state in the automaton in Figure 4.1, we have confirmed that this result implies safety
of the whole system. Therefore, the iterative approach can also be used to verify correct
ladder logic programs.

Goals: Options:
BT X TimeLimit Jen =t
[+ 12 -
T3 Extra Options:
[+ T4 [
[+] T3 Save dimacs File | Prove |
[LS
Results:
Status
Used Axioms [ax_0
Ax_1 ol
Ax 2
Ax_3
A4
Ax_5 £
i Show Details |

A
minisat lﬁwh Mode:

Options:
= Run |
TimeLimit z0
= Batch mode finished
Extra Oplions:

Current goal: —

Global Options:
W include preceeding proven therorems in next proof attempt

Help | Save Prover Configuration | Exit Praver |

Figure 5.7: Forwards reachability - Successful verification of correct ladder.

Obviously, the major downfall, is that to ensure the whole state space has been verified,
manual meta reasoning is required. On such a small example, this is relatively easy as the
automaton can be created by hand. Considering a real interlocking program then there is in
the region of 2309 to 2590 possible reachable states, and hence manual reasoning about such
an automaton would be impossible. For this reason, an automated approach to knowing
when the full state space of a system has been checked is desired. In the next chapter,
some techniques which enable this reasoning to be automated will be discussed.

Chapter 6

Unbounded Model Checking

Contents
6.1 LoopFreePaths 0., 49
6.2 Explicit Inclusion Check 52
6.3 Application of the Inclusion Check to Ladder Logic. 55
6.4 Temporal Induction 56
6.5 Application of Temporal Induction to Ladder Logic. 58

Given the problems that we have shown bounded model checking to have (see Chapter 5),
we now introduce two methods to solve these problems. Both methods will allow us to au-
tomate a check to show when the reachable state space of an automaton has been reached.
The first approach we consider involves adding an explicit inclusion formulae to the verifica-
tion process. Whereas the second approach will adapt the format of the iteration algorithms
given in Section 5.3.1. Both approaches will require the notion of loop free paths through
an automaton to be formulated. For this reason, we shall first introduce some motivation
of why we need such a loop free property, before explaining how we can formulate such a
property in propositional logic. Finally, we show the use of this formulation within our two
approaches to gain a fully automatic verification process for Westrace interlockings.

6.1 Loop Free Paths

The property of a loop free path will be required for the complete model checking approaches
we consider later. Here, we firstly define what we mean by “path” and “loop free”, before
motivating why the notion of a loop free path is needed. Finally we show how to formulate
the property of loop freedom in propositional logic.

From this point onwards, we will use the notion of a path, by this we mean:

Definition 6.1 (Path): Given an automaton A, a path R of length n is defined as a

49

Chapter 6 Unbounded Model Checking

sequence of (n+1) states pg, j41, - - - 4, Which are in transition relation:

R=po—p1— = fin

Given this we can extend the notion of a path to that of a loop free path, that is

Definition 6.2 (Loop Free Path): Given an automaton A, a loop free path R of length n
is defined as:
R=po—p1— - — pp

where for all 0 <7 < j <n, u; # 1.

That is a path is loop free if all the states along the path are unique. Using these notions,
we can motivate the need for loop free paths within the verification process.

6.1.1 Why Loop Freedom

The forward iteration approach to verification introduced in Section 5.3.1, is based on the
process of verifying an increasing number of transitions through an automaton. When we
say that we have verified, for example, up to five transitions in an automaton, we mean that
we have verified all concrete paths of length five through the automaton. This will include
both paths containing loops, i.e., paths containing duplicated states, and paths without
loops'. To say that we have verified the entire reachable state space of an automaton,
means that we have verified a series of transitions equal to the length of the longest loop
free path occurring in the automaton. For example, in our pelican crossing automaton
given in Figure 4.1, we are required to verify five transitions to cover the reachable state
space. This is because the longest loop free path through the automaton has a length of
five. To be able to automate a check to know when all reachable states have been verified,
we of course need a method of reasoning about the longest path to occur in the automaton.
The reason why we need to reason not only about the longest path, but the longest loop
free path arises from the way in which we use the SAT solver as our verification tool.

pressed = 0
crossing = 1
req=0
tlag=0

pressed = 1 pressed = 1 pressed = 0

crossing = 0 crossing = 1 crossing = 0
x4 pressed = 1 req=1 req=0 req=1
crossing = 0 tlag=1 tlag=0 tlag=1
req=0

tlag=1

5
pressed = 0 /

crossing = 0
req=0

tlag=1 \

Figure 6.1: TIllustration of a path of length five that may be return by a SAT solver.
Obviously with such a path, not all states have been verified in this concrete instance.

!assuming such a path exists.

6.1 Loop Free Paths

Consider the process the SAT solver takes when we give it a formula to check for satisfia-
bility. When we call the SAT solver with our verification problem, i.e.,

—(Init A Transitiony,),

we ask is there any path of length k such that along that path, the safety condition ¢ is
violated. Of course the SAT solver now checks every possible path for such a violation.
Therefore, if we were to somehow ask the SAT solver “does k transitions verify every
reachable state”, it would always return a counter example to this question even if every
state had been verified. The counter example would be a path of length n but the path
would contain loops, and hence not every state is verified in this concrete counter example
path. This situation is illustrated in Figure 6.1. What we really need to solve this problem
is a way of telling the SAT solver to ignore paths with loops. This situation is illustrated
in Figure 6.2, where the longest loop free path is highlighted, and we can see that this path
passes through all reachable states in the automaton.

pressed = 1 pressed = 0

crossing = 1 crossing = 0
G = i 3 rein 7 reg=1
crossing=0 _—> tag=0 - tlag=1

pressed = 1 req=1 \5‘ pressed = 0

f\i crossing = 0 _ 25 tlag=1 crossing = 1
req=0 req=0
N tlag=1 tlag=0
pressed = 0 /
crossing = 0

req=0

tlag=1 ‘__\

Figure 6.2: Tllustration of a path of length five through the automaton. All reachable states
would have been verified via this path.

Given this problem of using a SAT solver, no matter how we formulate the question “have
all reachable states been verified?”, we will need to include a condition telling the SAT
solver to consider loop free paths only. We shall show how this can be done in the following
section.

6.1.2 Formulating Loop Freedom in Propositional Logic Loop

We now give a propositional formula to express the requirement of loop freedom within a
path.

For a state sequence encoded by Wy, W1, ..., W,, we define:

LE, =T, A(J\ ~(Wp & W)
0<k<I<n

where (Wi & W) = A i) & iD AN o c® < D5k ln > 0.

Chapter 6 Unbounded Model Checking

LF, describes the state sequences of length n of an automaton which are “loop free”, i.e.
the states appearing in the sequence are pairwise different. We can now continue to use this
notion of path loop freedom within our automated approaches to unbounded verification.

6.2 Explicit Inclusion Check

The first approach we discuss to completely automate the model checking approach is to
use an explicit inclusion check to indicate when we have verified all reachable states. To
do this, we introduce the an explicit formula to check to see if inclusion has been reached.
To give such a propositional formula, we would like to somehow capture the First order
formula for all paths of length n+1 there exists a path of length n such that all the states in
the longer path also occur in the shorter path. The basic way to encode such a property in
propositional logic, would be to simply unfold the definitions of both the for all and exists
statements. Considering that to unfold the exists statement alone would mean enumerating
all possible paths the automaton could contain, this approach quickly becomes not feasible.
For this reason, the approach we now present does not give a tight bound on when inclusion
is reached, but instead an approximation. To define out inclusion check more efficiently
than the brute force method, we can make use of the path loop freedom formulation given
earlier.

Definition 6.3 (Inclusion Check): Given an automaton A constructed from a transition
function v p, inclusion has been reached when we find an n > 0 such that the following
holds:

LF, = \/ Wan & W

0<i<n

where W, 1, W, are variable sets.

If the inclusion check property evaluates to true then it describes that we have a loop free
path of length n, and that adding another transition to this path means that we have to
take a loop. L.e., the new state u,41 in the path is equivalent to some previous state we have
already seen along the path. This is exactly the check we need to include in our call to the
SAT solver. Once again, if we consider that we would like to minimise the number of calls
to the SAT solver, then we have to consider implementation details of such an algorithm.
Like with the forwards iteration algorithm, we can describe a series of transitions using a
single formula. That is, to encode a series of n + 1 transitions along with a loop freedom
check, we can use the following formula.

Inclusiony, = =I(Wo) A Toi1 ALFy = \/ (Way1 & W),
0<i<n

This formula captures exactly the check we would like to use to see if all reachable states
have been verified. This is shown by Theorem 6.4.

Theorem 6.4 (Path condition implies inclusion): Let our formula encoding that inclusion

6.2 Explicit Inclusion Check

has been reached hold, that is

= I (Wo) ATt ALF, =\ (Wayr & W)

0<i<n
then we have that B,y1 C By U B;y...U B,, where By = I, i. e. the initial states, and
Bi+1 = {N/|M§N/): ¢P7/~L € Bl} fOI', 1 << n.
Proof. Let pn,4+1 be a state in B,,41, then there exists a path

Ho — M1 — =+ — HUn — HUni41

such that for all 0 < i < n + 1 it holds that p;sui+1 and pg = —I. If we now combine

Hos U1y -« - Up+1 into
v:WoUWiU...UW,41 — {0,1}

as our formula encoding inclusion is a tautology, we know that

v ~I(Wo) ATpir ALF, = \/ (Wai1 & Wi).

0<i<n

Now, given that g — 1 — +++ — pny1 is a path, we know that the formulae —1(W,) and
T, +1 both hold. Therefore if|

e LF, holds, then for some 7 < n we have
po — p1 — - — py =n+ 1

As a consequence of this, we have that p,.1 € B; for some i < n. Hence p,y1 €
By, B1U...UB,.

e LF, does not hold, then one of the states in the path has been repeated, which shows
that the is a shorter path for p,y1. Hence pp+1 € Bg, By U...UB,,.

O]

Also, we can illustrate that there will always be a point where the inclusion check becomes
true. This is given by Theorem 6.5.

Theorem 6.5 (Eventually the inclusion check becomes true): There exists a n such that
—I(Wo) AN Ty1 A LF, = Vgcjcy(Whi1 < W) becomes true.

Proof. Let n be the number of states in our automaton. Let v be a valuation,

o if v = —-I(Wy) ANTy41 A LF, then

viE \ Wan W)

0<i<n

as there are only n states in the automaton.

o if v = —=I(Wy) AT,q1 A LF, then the above formula holds.

Chapter 6 Unbounded Model Checking

O]

Finally, we know that in our automaton, if we reach a fixpoint in the state space, then
inclusion has been reached. That is,

Theorem 6.6 (Correctness of inclusion check): Considering our automaton, define By =
I, i. e. the initial states, and Bit1 = {y'|psp’ | Yp,u € Bi}f for, 1 < i < n. If
Biy1 CByUB1U...UB;then Bjys C BUB1U...UBjy.

Proof. Let p' € Bjyo, this implies that there exists u € B;+1 such that psp’ = ¢p. By
assumption, we know there exists a u € By for some 0 < k < i. Thus, ' € Byy1, and
hence ' € ByU By U...U Bji1. O

Using our defined inclusion check, we can now slightly modify the forwards iteration algo-
rithm given in Chapter 5. Figure 6.3 shows this new algorithm.

J<1
if —Initial is satisfiable return error trace
do
J—J+1
if =Transition; is satisfiable return error trace
while Inclusion; is unsatisfiable
return ”Safe”

Figure 6.3: Unbounded forwards iteration algorithm via the use of an explicit inclusion
check.

When comparing the new algorithm given in Figure 6.3 to the original bounded forwards
iteration algorithm in Figure 5.1, we can see that the while loop has been changed to a do
while loop. Also, the condition for exiting the loop has been changed. In this new version
of the algorithm, the check to see if we have reached the given bound has been removed,
and has been replaced with a set inclusion check. This means that the algorithm will
continually iterate, checking a larger and larger number of states until the set of checked
states reaches a fixed point. Hence now the algorithm is unbounded and only terminates if
a violation is found or when the entire reachable state space has been successfully verified.

We will now see how this example can be applied to the verification of the pelican crossing
ladder logic program. Before moving on, we should make a note about the size of such
an inclusion check formula. The formula given above grows very quickly as the number of
variables in the ladder logic program being verified increases. If we consider the formula size
required to encode ladder with k£ rungs for n transitions, then we have a formula bounded
by O(kn). Now if we consider the formula required to encode loop freedom for a path of
length n for the same ladder we gain a formula bounded by O(kn?). Hence we can see
that the size of our overall formula for n transitions with an inclusion check has a space
complexity of O(kn?). Obviously, this may cause space problems? as we try to verify large

Zbut not necessarily time problems as PTIME C PSPACE. This is because you obviously can’t use
more than PSPACFE in PTIME.

6.3 Application of the Inclusion Check to Ladder Logic

ladder logic programs over many iterations. Hence in Chapter 7, we shall discuss ways to
reduce such formula size during the verification process.

6.3 Application of the Inclusion Check to Ladder Logic

Here we give an example of how the above described inclusion check works successfully
on our pelican crossing example. We will consider the correct pelican crossing program
specified in Section 5.4.2. Here we shall not repeat this specification, just comment that we
have added to the specification one more transition. Also we shall show here how we add
a new check to be proven inside the then %implies section of the specification. Figure 6.4
shows the new then %implies specification.

then %implies
(tlagl V tlarl) A = (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tlibrl)

(= (crossingl < crossing0) V = (reql < req0)
V = (pressedl < pressed0) V — (tlagl < tlag0))
A (= (crossing2 < crossing0) V — (req2 < req0)

A (= (crossing6 < crossingd) V — (reqb < req5)
V = (pressed6 < pressed))
V = (tlagb < tlagh)) = ((crossing7 < crossing6)

V ((crossing7 < crossingl)
A (req7 < reql)
A (pressed7 < pressedl)
A (tlag7 < tlagl))
end

Figure 6.4: An inclusion check for the pelican crossing specified in CASL.

In Figure 6.4, we can see the new inclusion check has been added to the specification. For
reasons of space, some variables and statements have been omitted from this figure. This
illustrates further how large the formula becomes when adding the inclusion check, even for
our simple example. Firstly, in the specification we see the safety conditions to be proven.
Then below these safety conditions we see the inclusion property.

This inclusion property can be split into two parts. The first part occurring before the
implication symbol represents our loop freedom formula. The second part of the inclusion
property occurring after the implication, says that the new state we have reached in our

56

Chapter 6 Unbounded Model Checking

automaton is equal to a state we have seen previously. That is, we must take a loop to
have a path of such length.

Goals: Options:
[+] inclusion X TameLimit [io 2
=l
Extra Options:
Save dimacs File | va% |
Results:
Status
Used Axioms [ax_0
A1 =
Ax 2
Ax_3
Ax_4
x5 /
i Show Details |
minisat Batch Mode:
Options:
= Run |
TimeLimit z0 =
Extra Oplions:
Current goal: —

Global Options:
W include preceeding proven therorems in next proof attempt

Help | Save Prover Configuration | Exit Prover |

Figure 6.5: Inclusion check successfully holds.

In a similar manner to earlier, if we now try to prove that the inclusion property is true
using Hets and MiniSat, we can see the result is positive, this is shown in Figure 6.5.
Following from the example in Figure 6.2 of such a situation, this is exactly the result that
is to be expected. Hence, the explicit inclusion check can be used as an automatic way to
check that the whole state space of an automaton has been verified.

Given that the Inclusion check formula we have given here is very large, we now discuss a
slightly different technique that is once again based on the principle of induction.

6.4 Temporal Induction

The principle behind temporal induction was introduced by Mary Sheeran et. al. in [SSS00].
In this work, Sheeran et. al. introduce the idea of using a SAT solver to check if safety
properties are upheld within an automaton. The work introduces the the notion of using a
SAT solver to perform bounded model checking, and proposes several algorithms to perform
such a verification procedure. One of the algorithms proposed is that of temporal induction.
The work then explores how such algorithms perform when applied to the verification of
a hardware device known as an FPGA core. Here we shall discuss temporal induction,
explaining the notions behind the technique.

Temporal induction is a method that is based on strengthening the inductive approach
given by Kanso [Kan08]. As the name suggests, the verification method still consists of
two proof steps, namely the base case and the inductive step. However, to improve on the

6.4 Temporal Induction

problems arising with normal inductive verification, the base case is strengthened to say
that the safety condition holds for a series of n transitions through the system, not only one.
Given that we can prove such a base case, we can strengthen the inductive step to assume
that we have a series of n transitions where the safety condition is upheld. Of course we
need to include a loop freedom property, as otherwise the issues raised in Section 6.1.1 will
take effect. To explain this more thoroughly, we shall now describe the temporal induction
formulae that will specify our base case and induction step. The two formulae we present
are in line to the formulae presented in [ES03].

Consider the original base case formula used by Kanso for inductive verification:
I(Wo) NT(Wo, W1) NT (W1, W1) = (W1, Wa).

Here we see that there is two transitions through the automaton. If we were to replace
these transitions by a series of n transitions, then we would also have to check for all n
transitions the safety condition holds. To allow us to do this we introduce the following
definition:

Definition 6.7: Given an automaton A and a safety condition ¢ we define the formula:
safe, = Algjgn @j. where W;, W; 1 are variable sets.

This formula expresses that the safety condition holds in a series of n transitions through
the given automaton. Using this we give the following formula to represent the new base
case:

Base, = Init AT, = ¢n.

This formula is highly similar to the formula that we prove holds when performing our
forwards iteration algorithm for a bound of size n. If we prove this formula holds, then
we know that a serious of n transitions from the initial states of our automaton are safe.
Given we know this, and taking into account that we require the loop freedom property,
we can now strengthen out induction step formulae to become:

Stepp = Thy1 A LEy 11 A safe, = pni1.

This formula says that assuming there is a loop free path of length n + 1, and that the
safety condition holds for the first n transitions of this path, then the safety condition also
holds for the next transition in the path, namely transition n + 1. We can now construct
a verification algorithm using these two formulae as the basis. This algorithm is similar to
those presented in [SSS00, CESS08] and is known as the temporal induction algorithm.

n<«—0

while true do
if =Base,, is satisfiable return trace
if ~Step,, is unsatisfiable return “Safe”
n—n-++1

Figure 6.6: Temporal induction algorithm.

Chapter 6 Unbounded Model Checking

To consider the effect of this algorithm, we have to consider the effect of the two “if”
statements in it. The first “if” statement represents the check to see if our base case
holds. That is it checks to see if the safety condition holds for all paths of length n in our
automaton. Obviously, as we negate this formula, and then gain a satisfiable result from
the SAT solver, then it means that there is a violating state occurring on some path of
length n, hence we return a counter example. If there is no such satisfying assignment,
then we know that the first n transitions from any initial state in our automaton are safe.
The second “if” statement that occurs is concerned with the induction step. Here we ask
the question, given a loop free path of length n + 1 where the first n transitions are safe,
are all the n + 1 transitions safe. If we negate this, and the result is unsatisfiable, the it
means that there is no loop free path of length n + 1 where a violation occurs. However it
may also mean that there is no loop free path of length n+ 1 and hence we have checked all
reachable states. Therefore if the result is unsatisfiable, we know that we can return that
the system is safe. If this result is satisfiable, it means that a violation occurs on some path
of length n + 1, and hence we need to continue to find out if this path is reachable from an
initial state. This outline of the algorithm should give an intuitive understanding of why
the algorithm is complete and correct. Here we show that the algorithm terminates. For
completeness see [SSS00, ES03].

Theorem 6.8: For all ladder logic formulae and safety conditions, temporal induction
terminates.

Proof. Let ¢ be a ladder logic formula. Let ¢ be a safety condition. Given that the
automaton A(7)) is finite, we know that for some k all state sequences longer than k
include a state twice. Thus, the formula Ty A LFyy1 is unsatisfiable. This implies that
Stepy, = Ti4+1 AN LFp41 N, = safe;, is a tautology. Hence —Stepy, is unsatisfiable.]

We now continue to show how this temporal induction approach can be applied to the
verification of ladder logic programs via a small example.

6.5 Application of Temporal Induction to Ladder Logic

In this section, we show how the temporal induction algorithm given in the previous sec-
tion can be used to verify the example ladder logic program we have use throughout this
document. Again we do not repeat any specifications, but the example will use the same
transition specification as given in Figure 4.4. Also, we will use the same initial specification
as given in Figure 4.5. Finally the full specification is given in the Appendix.

To specify the Temporal induction approach in CASL, would involve creating a series of
specifications with an incremental number of transitions in each. For this reason, here we
shall just show the specification which leads to the system being verified as safe. Figure 6.7
and Figure 6.8 give the specifications for the base case and inductive step respectively.

6.5 Application of Temporal Induction to Ladder Logic

59

spec

and
and
then
then

end

BASE =

STATEOQ

STATEL

INITIAL[STATEQ]

TRANSITION[STATEQ|[STATE]]

%implies

(tlagl V tlarl) A = (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tibrl)

Figure 6.7: Base case for temporal induction specified in CASL.

spec
and
and

then
and

and

and

then

end

STEP =
STATEOQ
STATEL
STATE2
TRANSITION[STATEO][STATE1]
TRANSITION
[STATE] fit
req0 — reql crossing0 +— crossingl pressed() — pressedl
tlag0 — tlagl tlbg0 — tlbgl tlar0 — tlarl tibr0 — tlbri
plag0 +— plagl plar0 — plarl plbg0 — plbgl plbr0 — plbri
audiol — audiol|
[STATE2 fit
reql — req2 crossingl +— crossing? pressedl +— pressed?2
tlagl — tlag2 tlbgl — tlbg2 tlarl — tlar2 tibrl — tibr2
plagl — plag2 plarl — plar2 plbgl — plbg2 plbrl — plbr2
audiol — audio2)]
(= (crossingl < crossing0) V — (reql < req0)
V = (pressedl < pressed0) V = (tlagl < tlag0))
A (= (crossing2 < crossing0) V — (req2 < req0)
V = (pressed2 < pressed0) V — (tlag2 < tlag0))
A (= (crossing2 < crossingl) V — (req2 < reql)
V — (pressed2 < pressedl) V — (tlag2 < tlagl))
(tlagl V tlarl) A = (tlagl A tlarl)
A (tlbgl V tibr1) A — (tlbgl A tibrl)
%implies
(tlag2 V tlar2) A = (tlag2 A tlar2) A (tlbg2 V tlbr2)
A = (tlbg2 N tibr2)

Figure 6.8: Induction step for temporal induction specified in CASL.

The base case specification in Figure 6.7 simply specifies that a single transition from an
initial state upholds the safety condition. Here we have only specified a single transition,

Chapter 6 Unbounded Model Checking

because as we will see, this is enough for the step case of our temporal induction approach
to be proven. Also, notice that in this particular situation, the base case specification
happens to be identical to the base case specification used within the inductive verification
approach by Kanso. However, this is pure co-incidence, as with the temporal induction
approach the base case needed for a solution could also have contained a much larger series
of transitions.

Goals: Options: Goals: Options:
[+] Base X Timetimit 0 = [+] Step N Timetimit 20 2
Extra Options: Extra Options:
Save dimacs File Prove Save dimacs File Prove
Results: Results:
Status Status
Used Axioms Az 0 Used Axioms |Ax_0
1 | P 1 |
Az ? Ax 2
Ax_3 Az 3
Ax_d Ax_d
Az 5 7l Ax 5]
W Show Details Wi Show Details
minisat Batch Mode: minisat Batch Mode:
Options: Options:
= Run Al Run
TimeLimit 20 TimeLimit 20
= Baich mode finished = Batch made finished
Extra Options: Extra Options:
Current goal: - D Current goal: —
Global Options: Global Options:
W include preceeding proven therorems in next proof attempt M include preceeding proven therorems in next proof attempt
Help | Save Prover Configuration | Exit Prover | Help | Save Prover Configuration | Exit Prover

Figure 6.9: Result of verification using temporal induction.

Figure 6.8 gives the specification of the inductive step of our temporal induction approach.
Again we notice that there is no instantiation of the initial specification, and hence the
condition speaks about any path in the whole automaton, not only those starting at an
initial state. Also notice that the specification contains one transition more than in the
base case. Along with the transitions, the specification also contains formulae describing
that the path through the automaton should be loop free. Finally, we notice that before the
property to be proven, the assumption that the safety condition holds after one transition
is included.

This of course differs from the inductive step given in Chapter 4, as here we specify an
extra transition. This trick is possible due to the fact that the base case is strengthened
on each iteration, and hence if we do find a violation whilst verifying the inductive step,
we just ignore it and wait until it is found via the base case. Of course if it is not found via
the base case then it is unreachable. Also, having the assumption that the safety condition
holds in n previous transitions allows us to disregard unreachable states more quickly as
this n increases.

Using Hets and the tool structure it provides, we have once again checked these properties
hold using the MiniSat SAT solver. Both the successful base case and induction step
verification can be seen in Figure 6.9.

Given that we have now shown both the inclusion check and temporal inductive approaches
to be successful and complete verification techniques, we will move on to discuss methods

6.5 Application of Temporal Induction to Ladder Logic

61

to reduce formula size. Applying such formula reduction methods, will allow us to verify
larger ladder programs to a greater number of transitions. Results of these verification

techniques will finally be discussed in Chapter 9.

62

Chapter 6 Unbounded Model Checking

Chapter 7

Program Slicing

Contents
7.1 The Concept of Program Slicing 63
7.2 Slicing Ladder Logic o, 65
7.3 Application of Slicing to a Simple Example 68
7.4 Correctness of Slicing Ladder Logic 69

This chapter shall concentrate on a technique known as program slicing [Wei81, Tip95].
We show how the technique of program slicing, popular in other areas of Computer Science
including testing [GL91], can be applied to improve the verification processes we have
proposed. We begin by introducing the field of program slicing, before giving an algorithm
to apply the technique to ladder logic programs. We then give an example of its application
to a verification problem, before finally showing the correctness of the slicing algorithm.

7.1 The Concept of Program Slicing

Originally introduced by Mark Weiser [Wei81] in the early 1980’s, the concept of program
slicing can be defined intuitively as constructing a slice of a program where “Given an
imperative program, a slice is an executable program whose behaviour must be identical
to the specified subset of the original program’s behaviour” [Wei81]. Weiser proposed that
this is the process taken by a programmer when debugging a program. Given a point of
interest in a program, for example where a run-time error occurs, a programmer will search
the program code for program statements affecting the point of interest. The programmer
will then only consider these effecting statements in the debugging process. The set of
statements effecting the point of interest is known as the program slice. Weiser formulated
the problem of program slicing, and proposed an algorithm to solve the problem [Wei81].

Since being proposed, program slicing has not only been applied to debugging situations,
but also to the areas of program maintenance e.g. [GLI1], testing e.g. [HD95] and more
importantly program verification e.g. [FH98]. With this wide range of applications, program

63

Chapter 7 Program Slicing

slicing comes in many forms, here we shall use a technique known as backwards static slicing
which consists of given a slicing criterion i.e., a point of interest, computing in a backwards
fashion the program slice. Some related approaches and extensions to this approach exist
and include:

e Dynamic Slicing [Tip95] - Extend slicing criterion to include a set of inputs and then
consider the effect these inputs have on the flow of the program.

e Hybrid Approaches [Tip95] - Combine static and dynamic approaches, e.g, specify
only some input values.

e Forward vs Backward Slicing [Tip95] - Direction to slice from. E.g., is the given point
of interest a start point or end point. Both forward and backward approaches can be
applied to static, dynamic or hybrid approaches.

For further details on program slicing and the terminology used within the field see [Tip95,
Wei8l1].

We now give a small example of how regular program slicing works before continuing to
show how we can apply such techniques to aid us in the verification of ladder logic programs.

7.1.1 A Motivating Example

As an example of how program slicing works, consider the code sample in Figure 7.1,
which, given a number n, computes the sum and product of the numbers 1...n, printing
the results to the screen.

1| public void Calc(n){ 1| public void Calc(n){
2 =1, 2 =1,
3 prod = 1; 3
4 sum = 0; 4 sum = 0;
5 while (i<=n){ 5 while (i<=n){
6 sum = sum + 1i; 6 sum = sum + 1i;
7 prod = prod x 1i; 7
8 it++; 8 14+
9 } 9 }
10 Print (sum); 10 Print (sum);
11 Print (prod); 11
12| } 12| }
(a) Original Program. (b) Sliced Program.

Figure 7.1: An example of program slicing.

Figure 7.1 also shows the resultant slice that would typically be given by a slicing algorithm
when slicing with respect to the criterion C' = Point 10. In this simple example it is easy
to see that the original program and the computed program slice compute the same values
at statement 10 of the program. All statements in the program that affect statement 10
remain in the sliced program, and all statements that have no effect on statement 10 have
been removed. Another point that is illustrated by this example is how useful program

7.2 Slicing Ladder Logic

slicing may actually be when debugging software. Even though the example program is
a small and simple program, the sliced program contains 25% less code than the original
program.

7.2 Slicing Ladder Logic

The approaches we have proposed for the verification of ladder logic programs quickly give
rise to large formulae to be verified. For every iteration of the ladder logic program, both
the formulae size and the number of variables increase. As the formula size increases, both
the space and time requirements increase. This increase leads to a rather small bound!
on the number of iterations of a ladder logic program we can verify in a feasible amount
of time. We will now discuss, how, like with imperative programs, a slicing technique can
dramatically reduce the size of the problem (i.e., the formulae). This in turn will reduce the
space and time requirements required to verify ladder logic programs and hence improve
the bound for feasibility.

The overall intuition behind slicing in our setting, is that given a particular safety condition
for verification, the variables that occur within the safety condition are only dependant on
some part of the ladder logic program. Therefore we can remove the parts that do not effect
the safety condition. To do this we construct a new formulae to be verified, and hence just
verify a subset of the ladder logic program. Here it must be ensured that removing such
irrelevant parts of the program does not change the verification result. In the following
we will present an algorithm to identify and extract the important parts of a ladder logic
program, continuing to state what it means for such a slicing algorithm to be correct, and
finally proving its correctness in our automaton theoretic modelling approach.

7.2.1 Algorithm for Slicing Ladder Logic

To begin, we firstly define exactly what it means to construct a slice for a ladder logic
program with respect to some safety condition ¢. Here we note that we speak on the mod-
elling level, and talk about constructing a slice of our ladder logic program in propositional
form.

The first definition we give is the notion of dependence between rungs in a ladder logic
program.

Definition 7.1 (Dependant Relation): Given a ladder logic propositional formula ¢¥p =
[R1, Ro, ... Ry,] for some ladder logic program P. We define the relation of dependantp C
{1,...,n} x{1,...,n} between rungs of the ladder logic program, as the transitive closure
of

{(i,4) | j <iand ¢; € vars(v;)}

where a rung i has the form R; = ¢; < ;.

Lapproximately 100 iterations.

Chapter 7 Program Slicing

Using the notion of dependence, we can define what it means to be a slice of a ladder logic
program.

Definition 7.2 (Slice): Given a ladder logic propositional formula ¥p = [Ry, Ra,... Ry]
for some ladder logic program P, and a safety condition ¢. A slice 1y, of 1p is an order
preserving selection of rungs such that,

o R; € Yp, if ¢ € vars(p) or ¢; € vars(yp), i.e., the coil ¢, or ¢; occurs directly in the
safety condition, and

* R; € Yp, and ¢}, c; € dependantp implies that R; € ¥py, ie., if there is a rung
already in the slice, and the coil of this rung is dependant on another rung, then this
rung is in the slice.

Remark 7.3: This definition does not contain a notion of minimality, that is, a ladder
logic propositional formula ¢ p is always a slice of itself.

Given the fact the rung order matters within ladder logic programs, the definition of a
slice for a ladder logic propositional formula, shows us that if we wish to compute such
a slice we have to do so in a backward fashion. That is, we have to start working from
the last rung in a ladder logic propositional formula back to the first. Here we present an
algorithm to compute such a slice of a ladder logic propositional formula. The algorithm
we present is as presented in [FH98]. We again note that the algorithm is implemented
over our propositional formula modelling of ladder logic programs and not over the actual
ladder logic diagrams themselves. To present the algorithm we will give three main tasks to
be completed. For each task we then explain the process which needs to be implemented,
before finally arguing why such a process computes a slice as defined above.

e Step 1 - Extract variables from safety condition.
The first step of the algorithm is to compute a set of all the variables that occur in
the safety condition. Given a safety condition of the form described in Section 3.4,
we have to extract each variable from the safety condition via an implementation of
the vars function described in Section 3.1. The result of this set is the production of
a set of variable U which occur in the given safety condition.

e Step 2 - Calculate dependant coils.

The second step in the algorithm involves calculating all the coils of the ladder logic
propositional formula that effect the variables computed in the previous step. That
is, effect the safety condition. To do this, we can began at the last rung of the ladder
logic propositional formula, call this rung R; = ¢ < ;. We then compare the coil ¢;
of this rung with the set of variables U computed in step one. If the coil ¢, € U, then
we add all the variables occurring in 1; to the set U. We now continue to repeat this
step for each rung, until a fixed point is reached within the variable set. When this
process has been completed, the set U will contain all variables that somehow effect
the safety condition. Figure 7.2 illustrates the code that could be used to perform
this step.

7.2 Slicing Ladder Logic

67

Un+1 U

do

U«—U

Un+1 —U

for i =n down to 1 do
if C; € Ujy1 then U; «+— U; 1 U UCLTS(¢Z‘)
else Ui — Ui+1

U—U;

until U; ¢ U

return U

Figure 7.2: Algorithm to compute step two.

e Step 3 - Extract dependant rungs.
Finally, using the set of variables U computed in step two, we can remove all rungs
that do not effect the safety condition. To do this, construct the set:

index = {i € {1,...,n}|c; €U or ¢, € U.

Now, remove from the original program, all rungs R; whose indicies do not appear in
index. The result ¢ p, is the sliced version of program ¢ p.

Remark 7.4: The set of indicies representing rungs that are to be removed we shall call
index.

To ensure that the steps of this algorithm are correct, we now give an argument that the
steps one to three above compute the slice as defined earlier.

7.2.2 The Algorithm computes a slice

To argue that the algorithm we have outlined computes a slice, we have to argue several
things. Firstly it is easy to see that the computed formulae ¢ p, is a ladder logic proposi-
tional formula as defined in Section 3.2. This is due to the fact that we have only removed
rungs from the original formula ¥p and have also upheld the order condition in step two
of the algorithm. Now, it remains to argue the condition given by our definition of a slice.
To argue this, we need that the rungs occurring in ¢ p,, are all closed under the transitive
closure of the dependant relation. If we consider the fashion that we construct the variable
set U in step two of the algorithm, we can see that this condition is fulfilled. This is be-
cause every time we find a coil which effects the safety condition, we add all variables on
which that coil is dependant to the set U; of dependant variables. Hence when we consider
the next rung in the process, we are not only checking to see if the safety condition is
dependant on this rung, but also to see if any of the previously found coils are dependant
on this rung. This shows that the dependence between coils is upheld in this step. Given
that our algorithm meets these criteria, we know that it computes a slice of the original
ladder logic propositional formula.

Chapter 7 Program Slicing

To give an intuitive understanding of how this algorithm works, we now give a brief example
of the resultant slice obtained from applying the algorithm to a concrete problem.

7.3 Application of Slicing to a Simple Example

In this section, we show the results of applying the proposed slicing algorithm to our
pelican crossing example ladder logic program. Figure 7.3 shows the original ladder logic
propositional formula to be sliced.

[crossing’ <= (req N\ —crossing),

req <= (pressed A —req),

tlag’ < ((—crossing’) A (—pressed V req')),
tlbg' <= ((—crossing’) A (—pressed V req’)),
tlar’ <= crossing,

tibr' <= crossing’,

plag’ <= crossing,

plbg’ < crossing,

plar’ < (—crossing’),

plbr! < (—crossing'),

audio’ <= crossing'|

Figure 7.3: An example ladder logic program.

Now if we consider the safety condition:
(tlag' Vv tlar') A —(tlag’ A tlar’) A (tlbg' v tlbr') A —(tlbg’ A tlbr'),

we can see that it only speaks about certain variables of the ladder logic program. Therefore,
we can apply our slicing algorithm to reduce the program in Figure 7.3 with respect to the
given safety condition. Step one of the algorithm would compute the list of variables
occurring in the safety condition, that is the set:

U = {tlag', tlar', tibg', tibr'}.

After this, step two of the algorithm would find all dependant rungs in a backwards fashion.
So in our example the first rung to be checked would be

. . /
audio’ <= crossing .

Since the coil of this rung does not occur in U, the algorithm moves on to the next rung.
This process continues until the rung

tibr' <= crossing

is reached. Now we see that the coil ¢lbr’ occurs in U, so we add all variables occurring in
this rung to the set U;. This then gives the new set

U; = {tlag’ .tlar’ tlbg', tibr’, crossing'}.

7.4 Correctness of Slicing Ladder Logic 69

Continuing this process until all rungs of the program have been checked will then lead to
the resultant set of step two of our algorithm being

U = {tlag' .tlar’ , tlbg' , tibr’ crossing’, req , pressed}.

Finally, step three of the algorithm will construct a new ladder logic propositional formula
containing those rungs whose coils correspond to the variables in the set U produced by
step two of the algorithm. This removal is done in a backwards fashion, and the resultant
ladder logic propositional formula returned by step three of the algorithm for our pelican
crossing example is shown in Figure 7.4.

[crossing’ <= (req A\ —crossing),

req <= (pressed A —req),

tlag' < ((—crossing’) A (—pressed V req')),
tlbg <= ((—crossing’) A (—pressed V req')),
tlar’ <= crossing,

tlbr’ <= crossing']

Figure 7.4: A Sliced version of Figure 7.3.

In Figure 7.4, we can see that there is a considerably smaller number of rungs than in the
original ladder logic propositional formula. Even though our pelican crossing is a small
example of a ladder logic program, the slicing algorithm has reduced the number of rungs
from eleven down to just six, a decrease of nearly 50%. Such an decrease in size will mean
that the formulae we require for our approaches to verification will be reduced considerably.
Hence, the problem of hitting space and time issues has been delayed until a much higher
number of iterations.

Given that we have shown the success of our slicing approach, we now consider the effect
slicing has on our automaton theoretic modelling of ladder logic programs.

7.4 Correctness of Slicing Ladder Logic

In the section, we argue that the operation of constructing a slice through extraction of
dependant rungs is correct. That is, we argue that the validity of a ladder logic program
is upheld in the sliced version, with respect to the given safety condition. We state what
this means in our automaton modelling, before giving a correctness proof of the statement
based on such a modelling. To allow us to do this we firstly introduce some notions we will
require in our proof.

We firstly introduce what it means to reduce a ladder logic program a series of variables,
namely coils. This is the operation that is applied in step three of our algorithm. Here
we denote the set of indicies of rungs remaining in the sliced program as index, and the
indicies of rungs removed from the slice as index.

Chapter 7 Program Slicing

Definition 7.5 (Reducing a valuation — pt|inger): For a variable set V', given a valuation
'V —{0,1}, and a set of variables index, we define fi|indes : {ci|ci € index} — {0,1} as,

M|index ($) = M(x)

for all x € index.

For use within our proof, we shall also introduce the following definition of extending a
valuation by a set of variables.

Definition 7.6 (Extending a valuation — Vjg4eq i f): For a set of variables index, and a
valuation v : {¢|i € index} — {0,1}, we define vipger = f : {cili € {1,...,n}} — {0,1}
where f: {¢|i € index} — {0,1} as,

(v; : f)(z) = v(z) if z € {cli € index}
ndex = f(z) otherwise
for all z € {1,...,n}. Often, we use v :: f to represent Vinges :: f-

Remark 7.7: We shall also overload the |;,4e, and :: f notation to paired valuations. That
is, s it'|inder Will represent the paired valuation pgp’ both reduced by the rungs in index.
Also v :: fgv/ i f will represent the paired valuation v g/ extended by the functions f, f’.

Now we have given a definition of what is means to remove a set of rungs from our ladder
logic program, we will now show that the removal of such a set of rungs using the defined
technique, does not effect validity in our automaton representation.

Firstly we introduce a lemma stating that the reduction of paired valuations preserves
validity with regards to a given formula.

Lemma 7.8: sy = 1p = p3 1 lindex = ¥y

Proof. Let R; be a rung of ¥p,. As ugp' = ¢p, we know psp' = R;. As R; does not
depend on ¢, ¢, k € index, we have that pgp/|indes = Ri- O

Using this lemma, we shall now show that the reduction of paired valuations by some rung
set index, does not effect the reachability of states in our automaton model.

Lemma 7.9: For all y,y/ in an automaton A(yp) for some ladder logic program P and
some safety condition ¢, if pgp' is reachable with respect to A(yp) then s |indes 18
reachable with respect to A(¢py).

Proof. By induction on the length [of a derivation for psu’, i.e.,
R e e e a4

where pg € I.

Base Case: | = 0. Let y — ' be a derivation of length 0, then we know that:

7.4 Correctness of Slicing Ladder Logic

1. pelsof A(Yp), thatis v s.t. v =TI Avsp = ¢p and

2. psp' Edp.

Due to the fact we have not removed variables from I, we clearly have that v|;ngez(7) = v(7)
for all ¢« € I. Thus Vl|ijnder = —I. By Lemma 7.8 and given that vgu =)p we have that
V3§ ft|index = ¥pP, and hence that fi|inges € Is of A(Ypy). Given that pifinge, is an initial
state in A(¢py,) it remains to show that pgu'|inges = ¥p,. This follows directly from
Lemma 7.8 and thus fi|indes — 1'|indes i & derivation in A(¢p,,).

Induction Step: [+ 1. Let
e R e R

be a derivation of length I + 1 for pugpu’ in A(¢»p). Here we know that p; s are reachable
via a derivation of length [in A(¢)p). Hence by induction we know that g3 u|inge. are
reachable in a derivation of length ! in A(¢p,). We know that pugp' = ¥p and hence by
Lemma 7.8 we know that 1181/ |inges = ¥ p,. Therefore

MO‘indeaz - Ul’index — ,ulfl‘index - Ml’indez - N‘index - //"mdex

is a derivation in A(¢p,).

O

Next, we introduce a lemma which will aid us to show the reverse direction. That is that
including the removed set of rungs again does not change reachability in our automaton.

Lemma 7.10: vgv/ |= ¢p, implies that for all f there exists a f’ such that v :: fgpu' =
[T Evp

Proof. Taking vgv/, we can choose an arbitrary f to give v :: f. Now we can define for
each rung R; € ¢, and i € index:

0 ifz=c;and v [}
f(@) = . g
1 ifr=candv:fE=
Hence, we gain v :: f and v/ :: f/ such that v :: fg1/ 0 f/ = p. O

Using this lemma, we now proof that expanding an automaton by adding extra variables
does not effect reachability in the automaton.

Lemma 7.11: For all v,7/ in an automaton A(¢p,) for some ladder logic program P, if
vgv/' is reachable with respect to A(¢p,) then there exists f, f’ such that v :: fgu' :: f'is
reachable with respect to A(¢p).

Proof. By induction on the length [of a derivation for v/, i.e.,

1/0—>I/1—>---—>Vl_1—>lj—>l/

72

Chapter 7 Program Slicing

where vy € I;.

Base Case: | = 0. Let v — 1/ be a derivation of length 0, then we know that:
1. v eI, of A(Ypy), that is Iu s.t. v |=—-I A pugv = 1p, and
2. vV = Yp,.

Therefore, we need to show there exists a p :: f such that p :: f = —I. Since we have
not added any input variables, any arbitrary f suffices. As vsv' |= ¢p,, we know by
Lemma 7.10 that there exists f’ such that v :: fgv/ 2 f' = p.

Induction Step: [+ 1. Let
1/0—>I/1—>--'—>I/l_1—>1/l—>lj—>l/

be a derivation of length [+ 1 for v§v/ in A(¢y,). Here we know that 131 are reachable
via a derivation of length [in A(¢p,). Hence by induction, we know that v; == figv == f
are reachable in a derivation of length [in A(¢p), for some f; and f. We know that
vsv = ¢plr and hence by Lemma 7.10 we know that v = fgu = f' |= 1, for some f’.
Therefore,

wifo—mrunfi— oy maa—ysfi—spef—pu o f
is a derivation in A(¢p). O
Given that we have now proven the removal of rungs still ensures validity is upheld within

our automaton theoretic modelling, we shall now show that the overall operation of slicing
is also correct.

Theorem 7.12: Given a ladder logic propositional formula p for some ladder logic pro-
gram P, its corresponding automaton A(¢p), a safety condition ¢,

AYp) ¢ = AlYpy) ¢

Proof. Let vgv' be reachable in A(¢p,). Then by Lemma 7.11 there exists f, f such that
v fgv o f is reachable in A(¢p). Thus, via our assumption, we have that v :: fgr/
/" E . Hence vgv = ¢ as ¢ does not depend on variables in {¢;|i € index}. O

Theorem 7.13: Given a ladder logic propositional formula ¢ p for some ladder logic pro-
gram P, its corresponding automaton A(ip), a safety condition ¢,

A(Yp) = < A(Ypy) = .

Proof. Let usu' be reachable in A(¢p). Then by Lemma 7.9, 13 it]inder, Wwhere index is
the set of variables produced by slicing, is reachable in A(yp,). Thus via our assumption
we know that psu'|indges |E - Hence psp = ¢, as ¢ does not depend on the variables in
{cili € index}. O

7.4 Correctness of Slicing Ladder Logic 73

As we have shown the slicing of ladder logic propositional formulae to be correct with
respect to some safety condition, we can now apply this algorithm to reduce the size of
ladder logic propositional formulae. We continue by showing how we have implemented
this algorithm along with the other verification algorithms given earlier, into a verification
tool for Westrace interlockings.

74

Chapter 7 Program Slicing

Chapter 8

The Verification Tool

Contents
8.1 The Original Tool, 75
8.2 Development of the New Tool 78
8.3 Encoding A New Train Station 80
8.4 Implementing New Verification Strategies and Slicing 81
8.5 Software Engineering Practices 82

In this chapter, we describe how we have modified and extended the tool created by Kanso
in [Kan08]. The result of which is a new verification tool for Westrace interlocking ladder
logic programs. We shall give an overview of how the tool given by Kanso firstly works,
and then how it has been improved. We comment on aspects such as how it has been
made more generic and enhanced via efficiency improvements. We shall show the overall
structure of the new tool, including where the application of algorithms such as the slicing
algorithm given in Chapter 7 take place. We comment on some software engineering issues
that were encountered along the way, before giving some possible future improvements for
the tool.

8.1 The Original Tool

The verification tool created by Kanso [Kan08] consisted of two underlying programs. One
program concerned with safety conditions and one program concerned with verification.
The general outline of these tools is shown in Figure 8.1 and Figure 8.2.

Figure 8.1 shows the overall software architecture for the program created by Kanso to
deal with the generation of safety conditions. We can see that there are two inputs to
the main program itself. One is an informal first order form safety condition, given in
a language defined in [Kan08]. Whilst the other is a railway plan. The railway plan is
constructed out of two further parts, namely, a railway topology describing the layout of
the railway via an encoding in Prolog. Then secondly a Java mnemonic wrapper. The

75

Chapter 8 The Verification Tool

namespace of the railway topology used for signals, points and other entities, differs from
the namespace of the concrete ladder logic program!. For this reason, a specific namespace
mnemonic wrapper was created by Kanso using Java. This wrapper is then responsible
for converting names used in the railway topology into concrete names used within the
ladder logic program. This process takes place when the overall safety condition generation
process queries this namespace converter for the names of track entities used within the
safety condition. Obviously, this part of the tool is not very generic, as both the Prolog
topology and the Java wrapper is dependant on the railway plan being verified.

(N\

Prolog
Railway
Topology

I N

Java
Mnemonic
Wrapper

Java Safety
Condition
Generator

Concrete
Safety
Condition

Informal
Safety —
Condition

Figure 8.1: Architecture of the Safety Condition Generator created by Kanso.

The safety condition generation program, given these two inputs, transforms the informal
safety condition into a series of propositional formulae to be verified. The propositional
formulae would contain concrete names instead of the abstract names that were given in the
informal safety condition. For example the word “point” could be replaced by the actual
point “TP101”. These names are gained, as explained above, from the Prolog encoding
and Java wrapper.

The second part of the tool, the structure of which is shown in Figure 8.2, was concerned
with the actual verification process. This part of the tool is predominantly programmed
using Haskell. As inputs it takes, a ladder logic program and a formal safety condition
obtained from the safety condition generator. This program firstly uses a ladder logic
parser to parse the ladder logic program into a propositional formula representation. This
was completed via the use of an abstract syntax for propositional logic in Haskell. Then,
using this propositional formula, and the safety condition, the program constructs a pair
of inductive formulae to be verified (see Chapter 4). These formulae are passed, by the
program to a SAT solver to be verified. Depending on the result from the SAT solver, the
program would then either return that the system was safe, or return a counter example
showing the system to be unsafe. To return such a counter example, the counter example
from the SAT solver would be run through a series of scripts. These scripts would then
create a pictorial form of the counter example for the engineers at Invensys to study.

!This is a design decision made by Invensys.

8.1 The Original Tool

7

Ladder Logic :
{ Program]—*{Ladder Logic Parser}

h 4

s)
Verification Process

Formal safety [Formulae Generator] Verification
Condition Result

\ 4
SAT Solver
v Pictorial
@—» Counter

Example

Figure 8.2: Architecture of the verification tool by Kanso.

Finally combining these two programs, results in the overall tool developed by Kanso. We
shall now consider some problems with these two programs before continuing to show the
structure of our new tool.

8.1.1 Problems with the Implementation

With regards to the the two programs commented on above, there are a few main problems.
The largest problem is that of genericity. If we consider the two programs, then both contain
parts that are tightly coupled with the particular railway that was being verified. In the
safety condition tool, the Prolog topological encoding of the railway and the Java mnemonic
wrapper are both specific to the interlocking verified. In the verification program, the ladder
logic parser was also based around the single ladder logic program under consideration.
Finally, with regards to genericity, the counter example generation uses scripts and files that
are based around a template picture of the concrete railway under verification. Therefore
this template would have to be reconstructed for every train station that is verified. Hence,
a more generic tool would require these parts of the programs to be improved.

Other problems with the two programs that are not so fundamental from a theoretical point
of view, but more from a software engineering point of view, were those regarding the actual
implementation details. As discuss above, several different implementation languages were
used throughout the tool. This makes understanding and maintaining all aspects of the
tool somewhat difficult, as obviously it requires expertise in all the languages used. Also,
the technical documentation for the tool was lacking, with much of the Haskell code missing
proper documentation. This again adds to the difficulty of maintaining and improving the
tool. These software issues are probably due to the fact that the implementation by Kanso
was a prototypical one. That is, the tool was created to answer the theoretical question
of whether or not verification of Westrace interlockings was feasible. As we plan to create
a more concrete solution from this prototype, we shall try to improve on such software

Chapter 8 The Verification Tool

engineering aspects of the tool. These improvements to not only the software engineering,
but also to the theoretical framework of the tool will now be given discuss.

8.2 Development of the New Tool

The tool we have implemented has been based on aspects of the tool by Kanso. The overall
aim of improving the tool by Kanso can be split into some smaller aims, namely:

e Test the genericity of the tool by Kanso, by trying to use it with another train station.
e Improve the verification processes by implementing the algorithms for model checking.
e Improve the efficiency of verification by adding functionality to perform slicing.

e Finally, improve the software engineering aspects of the tool, for example, code quality
and maintainability.

We no give a general overview of the structure of our new tool, before commenting on the
steps that were taken, and problems that arose when trying to reach the above goals.

Firstly, with regards to structure of the new tool, we note that we also split the tool into
two smaller programs, one program concerning generation of safety conditions, and one
program concerning the verification process.

The overall structure of the safety condition generator has remained the same, i.e., as
given in Figure 8.1, but it has been extended to cope with another railway station. That
is, we have given another Prolog encoding of the new railway, along with a Java mnemonic
wrapper for this new railway. We have then used the existing program, and plugged these
two pieces into it. More information on this implementation process is given in Section 8.3.
The reasons for not creating a more generic tool at this point is down to the fundamental
design decisions taken by Invensys. Currently, mnemonics used by Invensys differ for every
railway station and corresponding interlocking. Often these mnemonic mappings are highly
complicated and hence unless further work with Invensys is completed to try to generalise
such mnemonics, it will be difficult to this given program generic.

With regards to the overall architecture of the verification part of the tool, many changes
have been made. Figure 8.3 outlines the structure of this new program.

In Figure 8.3 we can see that the overall verification process still takes as inputs a ladder
logic program and a formal safety condition, but also now has an input representing the
bound to compute to with some verification processes. We can also see that the ladder
logic program is still parsed using a parser, although this parser has been extended. These
extensions we will see in more detail in Section 8.3. After the ladder logic has been parsed
into an abstract syntax for propositional formulae, we can see that is is entered along with
the safety condition into the main verification process.

This verification process is where most of the changes to the original tool have occurred.
The first change that is noticeable, is that the ladder logic propositional formula is now
run through a slicing algorithm, as described in Chapter 7. This algorithm slices, with

8.2 Development of the New Tool

respect to a given safety condition, the ladder logic propositional formula and produces
a new, usually smaller formula to be used within the verification process. Next, instead
of only performing inductive verification, the user now has an option of choosing between
three verification processes. That is, the user can select to perform inductive verification,
bounded model checking or temporal induction. These three approaches are implemented
using the algorithms we have described in earlier chapters. We note that the inductive
verification approach has also been implemented more efficiently, the result of which we
shall see in Chapter 9. Also, we notice that here we make use of the newly added third
input, this defines how many iterations the user would like to run the bounded model
checker over. We should also note that partly implemented, is the infrastructure to allow
the user to use our backwards iteration algorithm. Currently, a counter example can be
hard coded into the tool, but to fully implement such an approach, a parser for counter
example files would need to be created. Thus, in turn allowing a trace to be constructed
backwards from the counter example.

(Ladder Logic Program)—»[lmproved Ladder Logic Parser}

h 4

Verification Process

[Formula Slicer}

(Formal Safety Condition)—» ¢

(Bounded T |
[Inductive] model I e(gnpqra
Bound K > Checking nduction
Paradox
Model Finder

\ 4
[Success or Counter Example}

Figure 8.3: Architecture of our new verification tool.

Finally, we notice that the scripts and pictorial counter example have been replace with a
text based counter example trace?. This counter example trace allows engineers at Invensys
to see how the interlocking system reacts through each execution of the ladder logic. Also,
such a counter example trace, when compared to a pictorial format trace, is completely
generic and will work for any given railway interlocking. We also comment here that the
removal of these scripts has the effect that the tool should work correctly on any operating
system, unlike the tool given by Kanso which was tied to a Linux based operating system.

20f course the trace output with inductive verification is simple a counter example.

Chapter 8 The Verification Tool

We now continue by commenting on the processes that were undertaken to make the changes
described above.

8.3 Encoding A New Train Station

The first main topic of implementation we shall discuss is the changes that were made to
successfully allow the tool to work for a new train station. To do this two main tasks were
completed. One was to encode the new train station topology into a Prolog file and to give
a Java mnemonic wrapper for this topology. The second was to extend the ladder logic
parser with some extra features to allow it to parse the new ladder logic file.

To encode a new train station, involved creating a Prolog file that represented the topo-
logical structure of the railway station. To do this, we followed the same Prolog term
naming conventions as Kanso [Kan08]. That is, we used terms such as “tracksegment” and
“mainsignal” to encode the main entities occurring in the new train station. An example
of part of this encoding is given in Figure 8.4. Here we note that real track segment names
have been converted into artificial ones for legality reasons.

% define track segments
tracksegment (’T192°).
tracksegment (’T5137).
tracksegment (’T199°).
tracksegment (’T2137).
tracksegment (’T411°).

Figure 8.4: Example of encoding track segments into Prolog.

This sample encoding illustrates how track segments of the new railway have been encoded.
During this encoding process, we note that there was no need to introduce any new term
constructs over the constructs defined by Kanso. Hence the encoding of the new train
station into a Prolog file was trouble free.

The next part of the tool that required creating for the new train station, was the java
mnemonic wrapper. Unlike the process of encoding the train station into a Prolog file,
this process was more complicated. This was down to the fact the mnemonic mappings
are not standardised by Invensys. Thus there are different mappings for different train
stations. This meant that the mnemonic mappings created by Kanso were of no use for
this train station, and hence a whole new mnemonic mapping structure was given. Here,
again for legality reasons, we have emitted an example of how such a mnemonic mapping
is constructed. Although a simple example is that every track segment name, e.g., like
“T411” from Figure 8.4, would be extended with a suffix, such as “.TSR”. Thus the overall
variable used within the ladder logic program to represent the example track segment would

8.4 Implementing New Verification Strategies and Slicing

be “T411.TSR”. This process of appending such suffixes to variable names is the job of the
mnemonic wrapper we have created.

The last part of the tool which required extension was the ladder logic parser. As mentioned
previously, this parser was centered around the ladder logic program for a single train
stations, hence when we tried to parse a new ladder logic program for the new train
station, the process failed. When this was looked into further, it was found that the
new train station simply made us of some new “key words”, and hence it was a relatively
simple task to extend the ladder logic parser to recognise these key words.

By making these two changes, we have managed to successfully run the verification tool
for a new train station. This shows that the approaches taken by Kanso do in fact scale
up to allow the verification of further Westrace interlockings.

8.4 Implementing New Verification Strategies and Slicing

The most substantial improvement to the tool itself was the inclusion of new verification
strategies and the functionality to perform slicing. To complete this task involved the
implementation of the algorithms discussed in Chapters 5, 6 and 7. That is, we implemented
the following verification processes:

e an improved inductive approach to verification,

e a forward iteration approach to verification,

e a backward iteration approach to verification, and
e a temporal induction approach to verification,

along with an implementation of the slicing algorithm given previously. As we have already
discuss the algorithmic details of these approaches, here we shall not concentrate on the
algorithms, but instead how these verification strategies have lead to the inclusion of a
new underlying proof tool begin used in the tool, and how the tool has been modified to
interface with such a proof tool.

8.4.1 Changing the Proof Tool

The proof tool originally used by Kanso in his verification tool was the OKsolver [Kul08].
This is a pure SAT solver which takes as input so called Dimacs format files, and also
produces outputs in Dimacs format. The tool we have used, namely Paradox [par09], differs
from this as it is not a SAT solver but a model finder which makes use of the MiniSat SAT
solver [min09]. For this reason, the Paradox tool does not take as input Dimacs format
files, but instead, files in the format of the TPTP [tpt09] specification language. The
results returned by Paradox are also are then given in the corresponding results language
of TSTP [tpt09]. This change meant that the tool had to be modified to create TPTP
specifications instead of Dimacs format files. Figure 8.5 shows one of the Haskell functions
used to output such TPTP specifications.

Chapter 8 The Verification Tool

The Haskel function shown in Figure 8.5, is the function that is used to output a TPTP
specification of the initial conditions for a ladder logic program. We can see that the first
thing the function does is to open a file called “Initial.tptp”. Next the function defines
a in line function putVarv to write a single axiom to the specification file. This function
basically writes a axiom representing that the given variable v should be false. Using this
function, we hen see a sequence function which runs the defined putVar function for every
input variable in the given ladder. The effect of this is that we get a file which contains
axioms stating that every input variable is set to false.

printInitialTp :: [Formula] —> IO()
printInitialTp ladder = do
h <— getAndOpenFile 7 Initial .tptp” WriteMode
let putVar v = do

hPutStrLn h (7 fof (ax,axiom, 77 4+ v + 7) .\n")
return ()

sequence_ (map putVar (getVarsPara 0 ladder))

hClose h

return ()

Figure 8.5: Haskell code for printing TPTP specification of initial conditions.

In a similar manner to the function in Figure 8.5, functions have been implemented to
create all the specifications for the verification approaches we require. Also, the result
returned from Paradox is in the format of a TSTP results. This results does not contain
complicated features and basically shows exactly the value assigned to each variable. For
this reason now processing of the results returned from Paradox was needed.

Finally, by combining our verification algorithms with such functions to print TPTP speci-
fications, we have enabled our tool to interface with the Paradox tool completely automat-
ically. The results of the verification using Paradox as the underlying tool proved to be
highly successful, as we shall see in the next chapter.

8.5 Software Engineering Practices

The last item of the new tool we shall comment on, is regarding the software engineering
aspects to the tool. We have revisited all the code base of Kanso’s, improving it by adding
full technical documentation. Of course, with this, full documentation of all new code has
also been given. That is for all Haskell code used within the tool, there is now complete
Haddock documentation, and for the Java sections of the tool, there is the corresponding
complete Java doc. A simple example of such Haddock documentation is given in Figure 8.6.
This comment snippet illustrates the type of Haddock documentation that has been added
to all files. In this particular example we see that the comment speaks about the whole
Haskell code file, which happened to be used to represent ladder logic programs. Using
these comments web pages have been created containing documentation for every function
in the code base.

8.5 Software Engineering Practices

Along with such Haddock comments, some technical comments have also been added to
the code in places. Such comments will allow future maintainers of the code to understand
quickly what complicated operations are being performed.

-- Module: Ladder
-- Maintainer: cspj@swan.ac.uk
-- Stability: provisional

-- Portability: portable

-— Defines the data type used to represent the ladder, it is

-- simple but has lots of operations to help.

-- A1l ladders start with a root and a list of rungs. each rung
-- has an identifier and a list of cells. the cells are used

-— to represent the components of the ladder logic diagram.

-- A module for displaying tree like structures.

Figure 8.6: Example illustrating the inclusion of Haddock documentation in Haskell files.

The maintainability of the tool as also been made easier by the reduction in the number of
languages used to create the tool. As mentioned, we have managed to simplify the overall
implementation of the tool by removing the use of any scripting languages. This in turn
also has the advantage that the tool should work correctly on any operating system, not
being tied to a Linux based operating system like the implementation by Kanso.

8.5.1 Future Improvements

We now give some issues, mainly regarding the user interface of the tool we have created.
That is, all the algorithms used for verification in the tool are sound, but the tool could
maybe be adapted to suit the needs of Invensys further.

The first example of this is that currently the tool runs with a simple command line inter-
face. What would be more suited to Invensys, would be to have some form of graphical
user interface displaying various options to the user. This idea could be extended further,
and the verification tool could be built into the tools that Invensys already use in the de-
sign process of Westrace Interlockings. Then as the Interlocking ladder logic programs are
designed, they could continually be verified. Also, as mentioned above, the user cannot
currently run the backwards iteration algorithm without changing the source code. Obvi-
ously this is not feasible for an average user, and hence the extension of the tool with a
counter example parser is highly recommended.

Finally the last improvement that would be recommended for the tool, it to solve the cur-
rent namespace problem with the safety condition generator. Again, as mentioned above

Chapter 8 The Verification Tool

the mnemonic mappings used by Invensys are non-trivial, and differ for every railway inter-
locking under verification. Therefore we propose that a graphical user interface is created,
which gives the option for the user to enter mnemonic mappings for a given station. These
mappings could then be stored for the given station, and used whenever a verification re-
quest is issued for that station. To do this successfully, features would have to be introduced
to give the user a standard way to enter mnemonic names, and hence further discussions
with Invensys would be required to determine the requirements for such a feature. If this
feature was implemented successfully, then the tool would be as generic as possible, with
the only aspect requiring editing to allow a net train station to be verified, would be the
topological track plan encoded in Prolog.

In this chapter, we have covered the overall architecture of the tool we have created. In
the next chapter, we shall show the results of applying our tool to the verification of two
concrete real world interlockings.

Chapter 9

Verification Results

Contents
9.1 The Testing Platform, 85
9.2 Experimental Results — Interlocking A 86
9.3 Experimental Results — Interlocking B 90
9.4 Analysisof Results 0000, 93

In this chapter, we give some results that were obtained through the application of our
tool to some verification problems proposed by Invensys. We note that some of these
safety conditions have been verified previously in [Kan08] and we simply apply different
verification techniques to these problems, mainly to explore the feasibility of each technique.
For legal reasons, we shall not give details on the railway stations that were verified, or
give formulae for the safety conditions under verification. Instead, we shall give abstract
names to the railway stations and give safety conditions in an informal but descriptive way.
Finally, when a counter example has been obtained, again for legal reasons, the counter
example will be omitted. We will conclude this chapter by giving a discussion of the results
obtained from each verification technique, before comparing the result’s from a practical
and then theoretical viewpoint.

9.1 The Testing Platform

Before giving the concrete verification results that have been achieved, we shall firstly
comment on the hardware and software used for the experiment environment. All the
verification experiments have been completed using the same computer with the following
specifications:

e Operating System — Ubuntu 9.04, 64-bit edition.
e CPU — Intel Q9650, Quad core - 3GHz.
e System Memory — 8GB DDR2 ram.

85

86

Chapter 9 Verification Results

Also, in all tests, we have used the Paradox model finder! as the underlying proof tool.

9.2 Experimental Results — Interlocking A

The first railway station interlocking we have verified is the same interlocking that was
verified by Kanso in [Kan08]. This interlocking contains a total of 331 rungs and 599
variables and in terms of physical size, the interlocking controls a small train stations.
For this interlocking, we verify four safety conditions. These four safety conditions have
been previously verified by Kanso, and here we shall use the conditions to both test the
results of each verification method we have proposed, whilst also showing the generation
of counter example traces to be possible. Below we give each safety condition, along with
the verification results for each approach, namely:

1. Inductive verification result by Kanso in [Kan08].
2. Inductive verification result via our new tool.

3. Bounded model checking (BMC) result using our forwards iteration algorithm both
with and without inclusion check.

4. Temporal induction verification result.

Obviously, if a condition is proven safe using inductive verification, then it will also be safe
for all possible bounds k£ when using a bounded model checking approach, and similarly
for a temporal induction approach. For these reasons, when a safety condition is proven to
hold via induction, we shall simply show the performance of other verification algorithms
up to the largest feasible bound. Also, when a counterexample is found, by say the bounded
model checking approach, we will not repeat details as to whether it was found by the other
approaches too, as this is always the case.

9.2.1 Point can not Move Unless Free

The first safety condition that we verified was that concerning the movement of points. The
safety condition basically says that a if a point has moved position when compared to its
position in the previous execution of the ladder logic, then it must have been allowed to do
so in the previous execution of the ladder logic. I.e., “P.normal A P'.reverse = P.free”.

Verification Type ‘ Result Time Taken(s) ‘
Inductive Base Succeed 0.38
Inductive Step Fail 0.37
Forward Iteration (BMC) Trace length = 3 0.81
Forward Iteration (BMC) with slicing | Trace length = 3 0.58

Figure 9.1: Our verification results for safety condition 1.

!Based on MiniSat.

9.2 FEzperimental Results — Interlocking A

This safety condition was verified by Kanso with the result that the verification of the base
case succeeded whilst the verification of the inductive step failed. The overall verification
time to find this failure was 182 seconds. With our verification approaches we gained the
following results:

In Figure 9.1 we can see that, like with kanso’s inductive verification, the base case for
this condition holds where as the inductive step is violated. We also see that the efficiency
of the inductive verification approach has been increased dramatically. The violation of
this safety condition illustrates the first successful application of our forward iteration
algorithm. That is, in the sense that we have successfully constructed a counter example
trace to where the safety condition is violated. We can also see that the application of the
slicing algorithm, with regards to the forward iterations algorithm, has also reduced the
time taken to produce such a counter example trace.

9.2.2 Points not in Normal and Reverse

The second safety condition we have verified for train station A again concerns movement
of points. It says that a point can not be in both normal and reverse at the same time.
Le., “=(P.normal A P.reverse)” Obviously if such a condition did occur within the ladder
logic program, them the interlocking would not be providing accurate information about
the physical track layout.

Verification Type ‘ Result Time Taken(s) ‘
Inductive Base Succeed 0.42
Inductive Step Succeed 0.29

Forward Iteration (BMC) Safe — Bound = 10 3.38
Safe — Bound = 20 7.23
Safe — Bound = 50 20.16
Safe — Bound = 100 47.49
Safe — Bound = 200 120.59
Safe — Bound = 500 522.86
Safe — Bound = 1000 1705.65
Unknown — Bound = 2000 | Out of Memory
Froward Iteration (BMC) with slicing | Safe — Bound = 10 0.76
Safe — Bound = 20 1.38
Safe — Bound = 50 3.55
Safe — Bound = 100 7.59
Safe — Bound = 200 17.05
Safe — Bound = 500 58.65
Safe — Bound = 1000 366.91
Safe — Bound = 2000 4553.82
Unknown — Bound = 3000 | Out of Memory

Figure 9.2: Our bounded verification results for safety condition 2.

Chapter 9 Verification Results

This safety condition was verified by Kanso as being safe, with the overall process taking a
total of 1.7 seconds. Below, we give various results of our tool, beginning with the results
for bounded verification techniques, then sowing the results for unbounded techniques.

Figure 9.2 shows the verification results for the improved inductive verification, along with
a series of forward iteration results with and without slicing. Again we can clearly see an
increase in the speed of inductive verification when compared to the result from Kanso.
Also, this table illustrates how the complexity of the problem grows as we increase the
number of iterations with the forwards reachability approach. We can see that without
applying a slicing technique, verification is only possible up to 1000 iterations. An inter-
esting point here is that the verification time for such a large amount of iterations is still
feasible with regards to time, just not with regards to space. This is due to the large, but
not necessarily complicated to solve, formulae we obtain during the verification process. It
is also why, as we can see from the table of results, by applying our slicing algorithm to
the verification process, we are able to verify up to 2000 iterations in total.

Verification Type Result Time Taken(s)\
Inclusion Reached
Forward Iteration (BMC) Safe — Bound = 10 13.48\No
with inclusion Safe — Bound = 20 56.09\No
Safe — Bound = 50 652.45\No
Unknown — Bound = 100 | Out of Memory\No
Forward Iteration (BMC) Safe — Bound = 10 1.7\No
with inclusion and slicing Safe — Bound = 20 5.14\No
Safe — Bound = 50 31.68\No
Safe — Bound = 100 177.59\No
Safe — Bound = 200 1554.85\No
Unknown — Bound = 500 | Out of Memory\No
Temporal Induction with slicing | Safe — Bound = 10 2.60\ Yes

Figure 9.3: Our bounded verification results for safety condition 2.

Finally, Figure 9.3 shows the results of applying our unbounded verification techniques
to the problem. As we can see, the first unbounded verification technique, namely using
an inclusion formula, fails to prove that inclusion is reached. We can also see the effect
of adding the inclusion check to the verification, as with the bounded techniques, 2000
iterations were possible where as here only 200 iterations were possible. This again is
due to the rapid growth in formula size when the inclusion check is added. Although
these results show that out temporal induction approach to verification succeeds to reach
inclusion. This fact follows from the fact that we can prove the safety property inductively,
and hence it is going t be provable via our temporal induction approach. Overall, in this
result, we can see that it may be unfeasible to reach inclusion using the current forward
iteration techniques.

9.2 FEzperimental Results — Interlocking A

9.2.3 Points Locked when Route Set

The next safety condition we have verified, is concerned with route setting. It says that if
a given route is set, then the corresponding points must be set to their correct positions.
Le., “R = Pl.normal N\ P2.reverse”. Again, if a route was set and the corresponding
points were set to the incorrect positions, then a train derailment would occur.

With regards to verification by Kanso, the verification of this safety condition failed. The
overall time taken to find this failure was a total of 1143 seconds. Below we once again
summarise our verification attempts.

Verification Type ‘ Result Time Taken(s) ‘
Inductive Base Succeed 0.42
Inductive Fail 0.34
Forward Iteration (BMC) Trace length = 4 1.76
Forward Iteration (BMC) with slicing | Trace length = 3 0.40

Figure 9.4: Our verification results for safety condition 3.

As with the verification of safety condition one, Figure 9.4 shows that our inductive veri-
fication approach gave the same result as Kanso, only much quicker. We can also see that
the forwards iteration approach was also able to give a counter example trace with respect
to the failure of this safety condition too. Here though it is interesting to see that the
slicing algorithm not only has the effect of increasing the efficiency of the forward iteration
approach when finding a counter example trace, but also had the effect of shortening the
number of iterations required to reach the counter example. This in turn means that the
counter example trace will be shorter, and hence easier for the engineers at Invensys to
understand.

9.2.4 Point can not Move when Track Occupied

The final safety condition we shall verify for train station A, is one that describes that a
point should not be allowed to move if there is a train occupying the track segment where
the point occurs. This safety condition is obviously something that should be upheld by
the interlocking program.

Interestingly here though, the verification by Kanso failed within the base case verification,
taking 297 seconds. Hence when we applied our inductive verification approach to the
problem, we also obtained a failure within the base case verification, but this time only
taking 0.51 seconds. As the failure occurs in the base case verification, a counter example
return by inductive verification, also happens to be a trace to the problem. For this reason
there is no point in commenting our further techniques, as they all fail in the first iteration,
and hence the counter example obtained from inductive verification suffices.

Chapter 9 Verification Results

9.3 Experimental Results — Interlocking B

The second railway station interlocking which we have applied our tool to is a completely
new interlocking that has not previously been verified. This interlocking contains a series of
238 rungs and 361 variables and in terms of physical size, the interlocking controls another
slightly more complex train station than train station A. Also, according to the engineers
at Invensys the overall structure of the ladder logic program for interlocking B is more
complicated than that of interlocking A, even though the number of rungs and variables
are less. Hence it is interesting to see how the approach fairs on a more complicated
program. Below, we give the verification results of applying the tool to verify three safety
conditions. For each result we shall give an overview of the approaches we have applied,
again namely:

1. Inductive verification result via our new tool.

2. Bounded model checking (BMC) result using our forwards iteration algorithm both
with and without inclusion check.

3. Temporal induction verification result.

Obviously, once again if a condition is proven safe using inductive verification, then it will
also be safe for all possible bounds k& when using a bounded model checking approach, and
similarly for a temporal induction approach. For these reasons, when a safety condition is
proven to hold via induction, we will once again, simply show the results of our iterative
approach to the largest bound possible. Similarly to the results for train station A, we will
avoid the repetition of details when a counter example trace is found by a given approach.

9.3.1 Point can not Move unless Free

The first safety condition which we verify for the new train station, is the same as the first
condition verified for train station A. That is, it describes that a point can only have moved
if it was free to move in the previous execution of the ladder logic. The table below give
the verification result for this property.

Verification Type ‘ Result Time Taken(s) ‘
Inductive Base Succeed 0.24
Inductive Fail 0.18
Forward Iteration (BMC) Trace length = 2 0.64
Forward Iteration (BMC) with slicing | Trace length = 2 0.39

Figure 9.5: Our verification results for safety condition 1.

In Figure 9.5, we can see that overall the inductive verification fails in the inductive step.
Then, as would be expected, the forwards iteration approach gives a counter example trace.
Interestingly this counter example trace occurs very quickly within only 2 iterations of the
algorithm. Also, once again we can see that slicing makes an effect on the overall speed of
finding such a counter example.

9.3 Experimental Results — Interlocking B 91

9.3.2 Point not in Normal and Reverse

Again, as with the verification of interlocking A, we have verified for interlocking B that
a point can not be in both normal and reverse positions at the same time. With regards
to the verification of this condition for train station A, the result was that the interlocking
upheld the safety condition. Interestingly, Figure 9.6 shows that this safety condition is
also respected by the interlocking for train station B.

Overall, Figure 9.6 shows that firstly, inductive verification succeeds and secondly, how
many iterations of our forwards reachability algorithm was possible, with and without the
application of slicing. Interestingly, even though this train station is more complex from
an Invensys point of view, the verification times, and number of possible iterations both
improve when compared to the results from train station A. We see that a much larger
number of iterations is possible before the program exceeds the machine memory, l.e.,
20000. Although we still have the space restriction issue at this point.

’ Verification Type ‘ Result Time Taken(s) ‘
Inductive Base Succeed 0.24
Inductive Step Succeed 0.21

Forward Iteration (BMC) Safe — Bound = 10 2.01
Safe — Bound = 20 4.05
Safe — Bound = 50 11.03
Safe — Bound = 100 24.61
Safe — Bound = 200 58.71
Safe — Bound = 500 220.28
Safe — Bound = 1000 668.85
Safe — Bound = 2000 2267.73
Unknown — Bound = 3000 Out Of Memory

Forward Iteration (BMC) with slicing | Safe — Bound = 10 0.26
Safe — Bound = 20 0.46
Safe — Bound = 50 1.12
Safe — Bound = 100 2.21
Safe — Bound = 200 4.61
Safe — Bound = 500 12.79
Safe — Bound = 1000 29.46
Safe — Bound = 2000 73.84
Safe — Bound = 3000 133.13
Safe — Bound = 4000 205.49
Safe — Bound = 5000 293.63
Safe — Bound = 10000 958.26
Safe — Bound = 20000 1706.19
Unknown — Bound = 50000 | Out Of Memory

Figure 9.6: Our bounded verification results for safety condition 2.

Next, in Figure 9.7, we can see the results of our unbounded approaches when applied the

Chapter 9 Verification Results

verification problem for this safety condition. Here again we see an improvement over the
results from the previous train station, with respect to the same safety condition. Also we
notice that once again temporal induction proves that inclusion is reached, and the forward
iteration approach with inclusion check does not.

Verification Type Result Time Taken(s)\
Inclusion Reached
Forward Iteration (BMC) Safe — Bound = 10 8.17\No
with inclusion Safe — Bound = 20 32.47\No
Safe — Bound = 50 333.39\No
Unknown — Bound = 100 Out Of Memory
Forward Iteration (BMC) Safe — Bound = 10 1.13\No
with inclusion and slicing Safe — Bound = 20 3.90\No
Safe — Bound = 50 26.43\No
Safe — Bound = 100 153.81\No
Safe — Bound = 200 1389.47\No
Unknown — Bound = 500 Out Of Memory
Temporal Induction with slicing | Safe — Bound = 10 2.57\ Yes

Figure 9.7: Our bounded verification results for safety condition 2.

Finally, we note that is is interesting to see that this safety condition is upheld with regards
to both interlockings. This could be due to the fact that Invensys re-use some parts of ladder
logic programs to form new ladder logic programs. If this safety condition speaks about a
ladder logic segment that is common between many interlocking programs, then it could
be interesting to explore whether or not other features of these ladder logic programs effect
the validity of this condition. In this sense we may be able to form a composition based
tool for verification. Later in Chapter 10 we shall consider this idea further.

9.3.3 Signal X Yellow then Signal Y Red

The final safety condition which we applied our verification tool to was one concerning
the signals at the given train station. The safety condition basically describes that if one
particular signal is showing yellow, than it must be the case that the next signal along
the track is showing red. l.e., “Sl.yellow = S2.red”. As described in Chapter 2 this
situation is quite a common rule in signalling systems.

Verification Type ‘ Result ‘ Time Taken(s) ‘
Inductive Base Succeed 0.24
Inductive Fail 0.18
Forward Iteration (BMC) Trace length 2 0.64
Forward Iteration (BMC) with slicing | Trace length 2 0.39

Figure 9.8: Our verification results for safety condition 3.

9.4 Analysis of Results

This safety condition was found not to hold in the inductive step verification, and hence a
counter example trace was generated by our forward iteration algorithm. These results are
summarised in Figure 9.8.

We can once again see, in Figure 9.8 that our slicing algorithm improves the efficiency
of counter example generation. Also, at this point it is interesting to note that like all
the other safety conditions that have failed verification, we have been able to successfully
produce a counter example trace using our forward iteration approach.

In the next section we shall give a discussion of these results, commenting on what effect
they have from a theoretical and practical point of view.

9.4 Analysis of Results

Overall, the results we have gained have been positive. For every safety condition we
have verified, the tool has either given a successful verification, or a counter example trace
has been constructed. This meets the initial goals of the project, namely to explore the
feasibility of SAT based verification of interlockings. It also means, that the tool is of
practical use to Invensys. The interesting result from a theoretical point of view is that we
did not manage to show inclusion with respect to our forward iteration approach. Below
we shall comment on some general outcomes of each verification approach, along with the
implications of such results in both a practical and theoretical sense.

9.4.1 Results of Inductive Verification

The results gained from our inductive verification approach were as to be expected. That
is, in the case of interlocking A, the results were in line with the results obtained by Kanso.
With regards to interlocking B, inductive verification proved successful in only one out of
three verification processes. Again this is to be expected given the problem of unreachable
states. The two interesting points with regards to inductive verification are the following:

e In all cases where inductive verification failed, a counter example trace was con-
structed. Hence the verification via induction happens to be correct. This raises
the question of how often does inductive verification actually fail to give an incorrect
result due to the problem of unreachable states.

e The inductive verification always completes very quickly (less than a second). This
is a improvement on the verification times obtained by Kanso, which were usually in
the region of a few minutes.

These positive results show that inductive verification should always be the first approach
to be used when verifying a safety condition. The very quick production of a result means
that it is not costly to run such a process. If the result happens to be positive, then there
is no need to apply other verification approaches. Whereas if the result is negative, the
forward or backward iteration approach could be used to give a full counter example trace

94

Chapter 9 Verification Results

at the expense that constructing such a trace is more costly in terms of time. The inclusion
of the inductive verification approach in the tool is justified exactly for these reasons.

9.4.2 Results of Bounded Model Checking

The series of results gained from our forward iteration model checking approaches can be
split into several sub approaches, namely,

e forward iteration,
e forward iteration with slicing,
e forward iteration with inclusion, and
e forward iteration with inclusion and slicing.
We will now comment on each of the four approaches in turn.

The basic forward iteration approach proved to be a useful technique in the generation of
counter example traces. In all the verification results where inductive verification gave a
counter example, the forward iteration approach was successfully able to construct a counter
example trace. We note that all counter example traces constructed were fairly short, i.e.,
less than five iterations. Hence, with such a small number of iterations required, this basic
approach proved to be efficient in creating counter example traces. Results obtained from
safety conditions shown to hold by inductive verification, showed that forward iteration was
possible up to two thousand iterations before memory issues were incurred. This is a large
number of iterations, but given that there is no inclusion check encoded with the approach,
it gives no idea as to how many iterations would be required to verify all reachable states.
Therefore, to conclude, the most successful use of the forward iteration approach would be
for the construction of counter example traces.

When slicing was applied to the forward iteration approach, a large improvement in both
time and space efficiency was recorded. With the application of slicing, counter example
generation times were reduced by over half in all cases, and in some cases the counter
example traces were even reduced in length. The reduction in length of a counter example
trace is beneficial to the engineers at Invensys, as it of course means less manual processing is
required when compared to larger counter example traces. For this reason, the application
of slicing to the forward iteration approach is not only useful for efficiency reasons, but
also for practical reasons such as counter example trace length. Finally, the application of
slicing allowed the verification of up to twenty thousand iterations, in comparison to only
two thousand iterations being possible without slicing.

The next aspect shown by the results is the effect of adding an inclusion check to our
forward iteration approach. The addition of an inclusion check property has a definite
impact on the overall efficiency in terms of both space and time. In all cases where an
inclusion check was included in our forward iteration approach, the time taken for the
verification increased over ten fold. Also, the number of iterations possible with inclusion
is reduced by over ten fold. Given that none of the results shows that inclusion has been
reached, a more efficient method of encoded inclusion is needed.

9.4 Analysis of Results

Again, when slicing was applied to the forward iteration approach with inclusion check,
the result is quite clear. Namely, slicing once again successfully reduced the verification
time in all cases. Also, the application of slicing allowed up to two hundred iterations of
the forward iteration with inclusion approach. This being double the amount of iterations
that was possible without the application of slicing. The think that is most noticeable,
is that even though slicing gives good results with regards to reducing the complexity of
the problem, once again inclusion was not reached. This also means that a more efficient
inclusion check is required for effective use of our forward iteration approach to be complete.

9.4.3 Results of Temporal Induction

The final verification results we shall comment on are those obtained from the temporal
inductions approach to verification. The results obtained here are maybe the least inter-
esting, as whenever inductive verification succeeded, by the way that we construct our
temporal induction formula, so did temporal induction. Also, whenever a counter example
was generated using the forward iterations technique, the same counter example would
also have been generated by temporal induction. These two results show that temporal
induction works correctly, however they do not demonstrate the full power of temporal
induction. To illustrate the full power, we would need to find a safety condition which is
incorrectly verified by the inductive approach, and which also fails to reach inclusion via
the forward iteration approach. Then we could apply the temporal induction approach to
see if it could be used to reach inclusion in such a case. If, in such a case temporal induc-
tion was successful in reaching inclusion, then it would make it the most suited verification
approach to be used by Invensys. This is due to the fact that it combines both the power
of inductive verification with the possible production of counter example traces. For this
reason, we think a good extension to the results presented here would be to experiment
further with the temporal induction approach to verification.

9.4.4 Results of Slicing

Finally, to conclude our summary of the results obtained, we shall comment further on the
successfulness of applying slicing o the verification approaches.

Overall, all the results obtained show that applying our slicing method to the formulae
involved in the verification process gives a large efficiency increase. Some analysis of the
application of the slicing algorithm have shown that the following reductions were possible
in some of the above verification tests:

e For interlocking A, the number of rungs contained in the ladder logic propositional
formula, was reduced, on average from 599 rungs to the region of 60 to 80 rungs.

e For interlocking B, the number of rungs contained in the ladder logic propositional
formula, was reduced on average from 238 rungs to between 25 to 50 rungs.

These figures illustrate exactly why the results improved so dramatically when applying
slicing. Given that the number of rungs in each ladder logic propositional formula was

Chapter 9 Verification Results

reduced by up to ten times, results in the overall formulae to be verified being up to ten
times smaller. Obviously, with slicing we have that the resultant formula size is dependant
on the safety condition being verified. Hence here it would be interesting to see the effect
slicing has on much more complicated, larger interlockings. With the simple examples train
stations we have used, there are only few physical track components, and hence each track
component can only be dependant on a few others. This means that values in the ladder
logic program are only dependant on small numbers of other values. If we consider a larger
train stations, then there will be many more physical track components, which all depend
on each other in much more complex ways. Hence here it would be interesting to see if the
application of slicing still has a reduction effect in the region of ten fold.

We have now given a review of all the verification result we have obtained with our tool.
Now we shall move on to discuss the outcome of the overall project, giving suggestions for
some interesting aspects that could be explored in future work.

Chapter 10

Conclusions and Future
Improvements

Contents
10.1 SUMMALY « v v v v v v v v v e 97
10.2 Possible Future Work i oo 98

We now bring this thesis to a close by commenting on the work that has been completed.
Finally, we give an overview for possible directions of future work.

10.1 Summary

In this thesis, we have completed a feasibility study into various techniques for SAT based
model checking of Westrace interlockings. We have provided a modelling process for Wes-
trace interlockings via propositional logic and given an automaton theoretic semantics for
this propositional model. We have studied in some depth, the verification processes of in-
ductive verification, bounded model checking, unbounded model checking via inclusion and
temporal induction. As a natural continuation from this, we have reviewed how a slicing
algorithm can be applied to reduce the complexity of the verification problem, showing the
correctness of its application. The overall outcome being the development of a verification
tool, with varied verification techniques on offer.

To show the success of our approach, we have applied our tool to the verification problem
for two real world interlocking systems. This illustrates several key points:

e The approaches we propose work. That is, an interlocking can successfully be verified
with respect to some safety condition. The result being either that the interlocking
is safe, or that a counter example trace is generated.

e The approaches we propose scale up to real world systems.

e SAT based verification is a successful method of verifying large systems.

97

Chapter 10 Conclusions and Future Improvements

Finally, the main contribution of this work has been concerned with the practical needs of
Invensys. Through a sound theoretical basis, we have shown how slicing can successfully
be used to allow such verification processes to be highly successful within the domain
of verifying interlocking systems. We have shown the theoretical limits of SAT based
verification techniques, illustrating that in an industrial setting these theoretical limits are
very rarely reached.

10.2 Possible Future Work

We shall now comment on several aspects of work that should be undertaken to follow on
from this project. Firstly, it would be interesting to see if there are further techniques that
can be applied to reduce the complexity of the verification process further. This in turn
will allow our iteration algorithms to be executed up to a larger bound, maybe even to the
stage where inclusion is reached. Secondly, with our current approaches towards encoding
a inclusion check, we have yet to reach inclusion. Hence, further research into encoding an
inclusion check efficiently would be required. Thirdly, a parser should be created to allow
more effective use of the ability to apply our backwards iteration algorithm to counter
examples generated by the tool. Finally, the potential of our tool should be demonstrated
further through the verification of a greater number of interlockings.

10.2.1 Functional Dependencies

One possibility to reduce the size of the formulae involved in our verification process is via
the extraction of functional dependencies. Like the slicing algorithm we have proposed, the
removal of functional dependencies would help to remove variables that are not necessarily
needed within the verification process. To explain functional dependencies further, consider
once more our pelican crossing ladder logic program modelled as a propositional formula.

[crossing’ <= (req A\ —crossing),

req. <= (pressed A —req),

tlag' < ((—crossing’) A (—pressed V req')),
tlbg < ((—crossing’) A (—pressed V req')),
tlar’ <= crossing,

tlbr’ <= crossing,

plag’ <= crossing’,

plbg’ <= crossing’,

plar’ < (—crossing'),

plbr’ < (—crossing’),

audio’ < crossing'|

Figure 10.1: An example ladder logic program.

Figure 10.1 shows that some of the coils occurring in the pelican crossing ladder logic
program are dependant on similar values. For example, both tlar’ and tlbr’ are dependant

10.2 Possible Future Work

on exactly the same value, namely crossing’. Therefore, to reduce the formula size, it
would make sense to perform some pre-processing to remove one of these variables. That
is, we could remove tlbr’ from the formulae to be verified, and then simple obtain its value
using the value of tlar” after the verification process. Of course, this notion can be extended
not only to variables that depend on the same value, but to variables that depend on each
other via some logical function f. Again considering our example in Figure 10.1, we can
see that the value of plar’ can be derived by negating the value of plag’. Hence here, the
function f relating the value of plar’ to the value of plag’ can simply be described as a
logical negation.

This simple example illustrates the idea of functional dependency removal. To give a more
formal definition, we have the following,

Definition 10.1 (Functional Dependancy): A variable x is functionally dependant on
variables 1, ..., x, if there exists a function f such that

x = f(x1,...,n).

Now if we were to remove such functional dependencies from a ladder logic program, the
hope would be that the verification process would be simplified further. The interesting
theoretical problem with functional dependencies is how to compute what variables are
functionally dependant on other variables, and through what function. Some work has
been completed into such topics in [LJHMO7, LW09, HD93]|, but it would be interesting to
see how the notion of functional dependencies could be applied to the verification problem
for ladder logic.

10.2.2 Explore Inclusion Check Further

The current methods we have used to encode an inclusion check into our forward iteration
approaches is by using an over approximation. This over approximation, namely the length
of the longest loop free path, has proved to expensive to add into the verification process,
as not once have we managed to reach inclusion. This is due to that fact that the longest
loop free path through a system may be much larger than the bound that is needed to
reach inclusion. Also, encoding that a path is loop free also causes a increase in overall
formula size. For these reasons, it would be interesting to research further into encoding
inclusion checks. One possibility to do this could be to analyse the type of state space
gained from ladder logic programs, to see in general if a large or small bound is required for
inclusion. Another possibility could be to consider further relationships within the ladder
logic program, to see how various parts of the ladder logic program effect the automaton.
Again, considerations would have to be taken to try to make such an approach as generic
as possible, but to begin maybe relationships between a few small ladder logic programs
could be explored.

100 Chapter 10 Conclusions and Future Improvements

10.2.3 Counter Example Parser

As previously mentioned, the functionality to perform backwards iteration based verifica-
tion has been included in the tool. Also some hard coded examples have been used to
experiment further with this technique. What would now be of interest to Invensys, is to
build another part to our verification tool to parse counter example files. Currently, counter
example traces are generated in the TSTP format [tpt09]. This format is very similar to
the input format used for the Paradox model finder we have used within our tool. The
syntax of the counter examples is reasonable simple, and hence the construction of a simple
parser for such counter examples would be time well spent. Once such a counter example
has been parsed, a simply transformation would be required to change the result into a
format of an initial condition for the verification process. This in turn would allow further
tests to be completed on the reachability of counter examples generated from the inductive
verification approach included in the tool. Again, this whole process could be completely
automated when a counter example is found via inductive verification, making the overall
verification process very simple for the engineers at Invensys.

10.2.4 Tool Integration and Compositional Reasoning

The final point we give as possible future work, is not so much involved with theoretical
aspects or limitations of the tool, but more with how it can aid further the engineers in
Invensys. Currently Invensys have a specific tool set they use for the creation of ladder logic
programs and hence the control programs for their interlockings. What we propose here
is it that the tool we have given is built into this tool set. This has two advantages from
a practical point of view. Firstly, the engineers are already using such tools, so through
combination, using this tool would be no more of a deviation than just clicking a button
and maybe entering a safety condition, or selecting one from a given list.

Secondly, the integration with the tool could be completed in such a way that the verifi-
cation process can actually be improved further. Currently Invensys use so called ladder
logic “templates”. These templates describe common scenario’s that arise in many train
stations, and can then be combined to give a full interlocking program. If the tool enabled
the verification of such templates. Then under certain conditions, it might be possible to
guarantee that combining two templates has the property that the safety conditions veri-
fied earlier would still be upheld. The advantages of such a compositional reasoning to the
verification process are obvious. All templates would only need to be verified once, an then
the composition of such templates just has to ensure that the required side conditions are
met. Also, with respect to efficiency, it may be much less complex to verify templates than
whole ladder logic programs. Hence the verification process would be quicker overall. This
would also make understanding of counter example traces easier, as they would contain less
components to be considered. Overall, we believe the exploration of such compositional
reasoning techniques would be the perfect way to extend our tool.

Bibliography

[ADKT05]

[AkeT8]

[BAB*95]

[BCOO]

[BCCZ99)]

[BFG*98]

[BGOO]

[BHYMWOO]

[Bjo09)

Nina Amla, Xiaoqun Du, Andreas Kuehlmann, Robert P. Kurshan, and Ken-
neth L. McMillan. An analysis of SAT-based model checking techniques in an
industrial environment. In Dominique Borrione and Wolfgang J. Paul, edi-
tors, CHARME, volume 3725 of Lecture Notes in Computer Science. Springer,
2005.

S. B. Akers. Binary decision diagrams. IEEE Trans. Comput., 27(6), 1978.

Anselmi Bernardeschi, A. Anselmi, C. Bernardeschi, A. Fantechi, S. Gnesi,
S. Larosa, G. Mongardi, and F. Torielli. An experience in formal verification of
safety properties of a railway signalling control system. In G. Rabe, editor, in
Proceedings of the SAFECOMP’95 Conference, Belgirate. Springer - Verlag,
1995.

Per Bjesse and Koen Claessen. SAT-based verification without state space
traversal. In Jr. Warren A. Hunt and Steven D. Johnson, editors, In Formal
Methods in Computer-Aided Design, pages 372—-389. Springer, 2000.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In Rance Cleaveland, editor,
TACAS ’99: Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems. Springer-Verlag, 1999.

Cinzia Bernardeschi, Alessandro Fantechi, Stefania Gnesi, Salvatore Larosa,
Giorgio Mongardi, and Dario Romano. A formal verification environment for
railway signaling system design. Form. Methods Syst. Des., 12(2), 1998.

J. Boulanger and M. Gallardo. Validation and verification of METEOR safety
software. In Advances in Transport Vol 7, pages 189-200. WIT Press, 2000.

Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. 10S Press, February 2009.

D. Bjoerner. Towards a domain model of transportation. In Domain En-
gineering — Technology Management, Research and Engineering, pages 333—
358. JAIST Press, 2009.

101

102 BIBLIOGRAPHY

[BKOS] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, May 2008.

[Bol06] William Bolton. Programmable Logic Controllers. Newnes, 2006.

[Bur02] Anthony Burton. Richard Trevithick: Giant of Steam. Aurum Press, 2002.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Dexter Kozen,
editor, Logic of Programs, Workshop. Springer-Verlag, 1981.

[CESS08] Koen Claessen, Niklas Een, Mary Sheeran, and Niklas Sérensson. SAT-
solving in practice. In Bengt Lennartson, Martin Fabian, Knut Akesson,
Alessandro Giua, and Ratnesh Kumar, editors, Proceedings of Workshop on
Discrete Event Systems (WODES). IEEE, May 2008.

[CGJT01] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Progress on the state explosion problem in model checking. Lecture Notes in
Computer Science, 2000, 2001.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, January 1999.

[cha09] zChatff, Webpage, last accessed in October 20009.
http://www.princeton.edu/ chaff/zchaff.html.

[Cla08] Edmund M. Clarke. The birth of model checking. In Orna Grumberg and
Helmut Veith, editors, 25 Years of Model Checking, volume 5000 of Lecture
Notes in Computer Science. Springer, 2008.

[CooT1] Stephen A. Cook. The complexity of theorem-proving procedures. In Michael
Harrison, Ranan Banerji, and Jeffrey Ullman, editors, STOC *71: Proceedings
of the third annual ACM symposium on Theory of computing. ACM, 1971.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7), 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. ACM, 7(3), 1960.

[ES03] Niklas Een and Niklas Soérensson. Temporal induction by incremental SAT
solving. Electronic Notes in Theoretical Computer Science, 89(4), 2003.
BMC’2003, First International Workshop on Bounded Model Checking.

[ES04] Niklas Een and Niklas Sorensson. An extensible SAT-solver. In En-
rico Giunchiglia and Armando Tacchella, editors, SAT 2003, LNCS 2919.
Springer, 2004.

[FHI8| Wan Fokkink and Paul Hollingshead. Verification of interlockings: from con-

trol tables to ladder logic diagrams. In J.F. Groote, S.P. Luttik, and J.J. van
Wamel, editors, FMICS’98. CWI, 1998.

BIBLIOGRAPHY 103

[Fok96] Wan Fokkink. Safety criteria for the vital processor interlocking at Hoorn-
Kersenboogerd. In J. Allan, C.A. Brebbia, R.J. Hill, G. Sciutto, and S. Sone,
editors, Proceedings of the 5th Conference on Computers in Railways (COM-
PRAIL’96), Volume I: Railway Systems and Management. Computational
Mechanics Publications, 1996.

[GLI1] Keith Brian Gallagher and James R. Lyle. Using program slicing in software
maintenance. IEEE Transaction. Software Engineering, 17(8), 1991.

[GPFW96] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms
for the satisfiability (SAT) problem: A survey. In Dingzhu Du, Jun Gu, and
Panos M. Pardalos, editors, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1996.

[GRV08S] Silvio Ghilardi, Silvio Ranise, and Thomas Valsecchi. Light-weight SMT-
based Model Checking. In Muffy Calder and Alice Miller, editors, Proceedings
of AVoCS 2008. University of Glasgow, 2008.

[HD93] Alan J. Hu and David L. Dill. Reducing BDD size by exploiting functional
dependencies. In Alfred E. Dunlop, editor, DAC ’93: Proceedings of the 30th
international Design Automation Conference. ACM, 1993.

[HD95] Mark Harman and Sebastian Danicic. Using program slicing to simplify test-
ing. Journal of Software Testing, Verification and Reliability, 5, 1995.

[HET09] HETS, Webpage, last accessed in October 20009.
http://www.informatik.uni-bremen.de/agbkb/forschung/
formal methods/CoFI/hets/index_e.htm.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HPOO] Anne E. Haxthausen and Jan Peleska. Formal development and verification
of a distributed railway control system. IEEE Trans. Softw. Eng., 26(8),
2000.

[HRO4] Michael Huth and Mark Ryan. Logic in Computer Science. Cambridge Uni-
versity Press, 2004.

[Hut07] Graham Hutton. Programming in Haskell. Cambridge University Press, Jan-
uary 2007.

[HvMO09] Marijn J. H. Heule and Hans van Maaren. Look-Ahead Based SAT Solvers,
chapter 5, pages 155-184. Volume 185 of Biere et al. [BHvMWO09], February

2009.
[TECO03] Programmable Controllers - Part 3: Programming languages, 2003. IEC
Standard 61131-3.
[INE09] INESS, Webpage, last accessed in October 2009. http://www.iness.eu/.
[inv09)] Invensys Rail, Webpage, last accessed October 20009.

http://wuw.invensysrail.com/.

104

BIBLIOGRAPHY

[Jac04]

[Jam09a]

[Jam09b]

[TBO4]

[JIR09)

[JKO9]

[JRO9]

[KanO8]

[KMS08]

[KP07]

[KRO1]

[KRO9]

[Kro99]

[Kro09]

René Jacquart, editor. IFIP 18th World Computer Congress, Topical Ses-
sions, chapter TRain: The Railway Domain - A Grand Challenge. Kluwer,
2004.

Phillip James. Verifying Train Control Software, 2009. Presentation at
BCTCS 2009, http://www2.warwick.ac.uk/fac/sci/dcs/events/bectcs/
webpage, last accesses in October 2009.

Phillip James. Verifying Train Control Software Using SAT-based Model
Checking., 2009. Presentation at VINOO09, P.h.D. workshop , Italy.

Jie-Hong Roland Jiang and Robert K. Brayton. Functional dependency for
verification reduction. In Rajeev Alur and Doron A. Peled, editors, Computer
Aided Verification, LNCS 2919. Springer, 2004.

Phillip James, Yoshinao Isobe, and Markus Roggenbach. Verifying Train
Control Software - An exercise in SAT-based Model Checking. In 11th JSSST
Workshop on Programming and Programming Languages (PPL2009). Japan
Society for Software Science and Technology, 2009.

Phillip James and Karim Kanso. Automated Verification of Train Control
Software, 2009. Presentation at Swansea Science Day.

Phillip James and Markus Roggenbach. SAT-based Model Checking of Train
Control Systems. Technical report, University of Udine, September 2009.

Karim Kanso. Formal verification of ladder logic. Master’s thesis, Swansea
University, 2008.

Karim Kanso, Faron Moller, and Anton Setzer. Verfication of safety proper-
ties in railway interlocking systems defined with ladder logic. In Muffy Calder
and Alice Miller, editors, AVOCS08, Glasgow 2008.

Stephanie Kemper and André Platzer. SAT-based abstraction refinement for
real-time systems. In Frank S. de Boer and Vladimir Mencl, editors, Formal
Aspects of Component Software, Third International Workshop, FACS 2006,
Prague, Czech Republic, Proceedings, volume 182 of ENTCS, 2007.

David Kerr and Tony Rowbotham. Introduction To Railway Signalling. In-
stitution of Railway Signal Engineers, 2001.

Temesghen Kahsai and Markus Roggenbach. Property preserving refinement
for Csp-Casl. Recent Trends in Algebraic Development Techniques: 19th In-
ternational Workshop, WADT 2008, Pisa, Italy, June 13-16, 2008, Revised
Selected Papers, 2009.

T. Kropf. Introduction to formal hardware verification. Springer Verlag, 1999.

Daniel Kroening. Software Verification, chapter 16, pages 505-532. Volume
185 of Biere et al. [BHvMWO09], February 2009.

BIBLIOGRAPHY 105

[KSS09] Henry A. Kautz, Ashish Sabharwal, and Bart Selman. Incomplete Algorithms,
chapter 6, pages 185-203. Volume 185 of Biere et al. [BHvMWO09], February
2009.

[Kul0g] Oliver Kullmann. The OKlibrary: A generative research platform for (gen-

eralised) SAT solving. Technical Report CSR 1-2008, Swansea University,
Computer Science Report Series, February 2008.

[Lea91] Maurice Leach. Railway Control Systems. A and C Black Publishers Ltd.,
1991.
[Lev96] William Levine, editor. The Control Handbook (Electrical Engineering Hand-

book). Crc Press, 1996.

[LJHMO07] Chih-Chun Lee, Jie-Hong R. Jiang, Chung-Yang (Ric) Huang, and Alan
Mishchenko. Scalable exploration of functional dependency by interpolation
and incremental SAT solving. In Georges Gielen, editor, ICCAD ’07: Pro-
ceedings of the 2007 IEEE/ACM international conference on Computer-aided
design. IEEE Press, 2007.

[LW09] Chen-Hsuan Lin and Chun-Yao Wang. Dependent latch identification in the
reachable state space. In Kazutoshi Wakabayashi, editor, ASP-DAC ’09: Pro-
ceedings of the 2009 Asia and South Pacific Design Automation Conference.
IEEE Press, 2009.

[min09] Minisat, Webpage, last accessed in October 2009.
http://minisat.se/Main.html.

[MOO7] Maura Mazzarello and Ennio Ottaviani. A traffic management system for
real-time traffic optimisation in railways. Transportation Research Part B:
Methodological, 41(2), 2007. Advanced Modelling of Train Operations in
Stations and Networks.

[Mos04] P. D. Mosses, editor. CASL Reference Manual. LNCS 2960. Springer, 2004.

[MP91] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-
current Systems. Springer, 1991.

[MSLMO09] Joao P. Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-Driven Clause
Learning SAT Solvers, chapter 4, pages 131-153. Volume 185 of Biere et al.
[BHVMWO09], February 2009.

[Noc85] 0.S. Nock. Railway Signalling. A and C Black Publishers Ltd., 1985.

[par09] Paradox model finder, Webpage, last accessed in October 2009.
http://www.cs.chalmers.se/ koen/folkung/.

[PGHDO4] J. Peleska, D. Grofle, A. E. Haxthausen, and R. Drechsler. Automated ver-
ification for train control systems. In Proceedings of Formal Methods for
Automation and Safety in Railway and Automotive Systems (FORMS/FOR-
MAT 2004)), Braunschweig, 2004.

106

BIBLIOGRAPHY

[PPO6]

[Sim94]

[SSS00]

[Thi09)]

[Tip95]

[tpt09]

[Tra09)

[upp09]

[vpi09]

[Wei81]

[wes09)]

[Win02]

[WRO3]

Wojciech Penczek and Agata Pélrola. Advances in Verification of Time Petri
Nets and Timed Automata: A Temporal Logic Approach (Studies in Compu-
tational Intelligence). Springer-Verlag New York, Inc., 2006.

Andrew Simpson. A formal specification of an automatic train protection
system. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, FME ’94:
Proceedings of the Second International Symposium of Formal Methods Eu-
rope on Industrial Benefit of Formal Methods. Springer-Verlag, 1994.

Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety prop-
erties using induction and a SAT-Solver. In Warren Hunt Jr and Steven John-
son, editors, FMCAD ’00: Proceedings of the Third International Conference
on Formal Methods in Computer-Aided Design. Springer-Verlag, 2000.

Harold Thimbleby. Contributing to safety and due diligence in safety-critical
interactive systems development by generating and analyzing finite state
models. In Gaelle Calvary, T. C. Nicholas Graham, and Philip Gray, editors,
EICS ’09: Proceedings of the 1st ACM SIGCHI symposium on Engineering

interactive computing systems. ACM, 2009.

Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3), 1995.

The TPTP problem library for automated theorem proving, Webpage, last
accessed October 2009. http://www.cs.miami.edu/ tptp/.

TRain, Webpage, last accessed in October 2009.
http://www.railwaydomain.org/.

Uppaal tool, Webpage, last accessed in October 2009.
http://www.uppaal.com/.

VPI, Webpage, last accessed in October 2009.
http://www.alstomsignalingsolutions.com/OurProducts/
WaysideProducts/InterlockingSolutions/VPI/.

Mark Weiser. Program slicing. In S. Jeffrey and L. Stucki, editors, ICSE
’81: Proceedings of the 5th international conference on Software engineering.
IEEE Press, 1981.

Invensys Rail, Westrace, Webpage, last accessed October 2009.
http://wuw.wrsl.com/assets/files/Interlocking/westrace/
WESTRACE%20Intorduction.pdf.

Kirsten Winter. Model checking railway interlocking systems. Awustralian
Computer Science Communications, 24(1), 2002.

Kirsten Winter and Neil J. Robinson. Modelling large railway interlockings
and model checking small ones. In Michael J. Oudshoorn, editor, ACSC ’03:
Proceedings of the 26th Australasian computer science conference. Australian
Computer Society, Inc., 2003.

BIBLIOGRAPHY 107

[ZKvHO1] Peter J. Zwaneveld, Leo G. Kroon, and Stan P. M. van Hoesel. Routing trains
through a railway station based on a node packing model. Furopean Journal
of Operational Research, 128(1):14 — 33, 2001.

[ZRKO3] Bohumir Zoubek, Jean-Marc Roussel, and Marta Kwiatowska. Towards au-

tomatic verification of ladder logic programs. In Proceedings of IMACS-IEEE
and CESA’03, 2003.

108 BIBLIOGRAPHY

Appendix A

Inductive Verification

library KANSO

logic PROPOSITIONAL

spec

end

spec

end

spec

end

spec

STATEOD =
crossingl req0 tlag0 tlbg0 tlar0 tlbr0 plag0 plbg0 plar0
plbr0 audio0 pressed(

STATEL =
crossingl reql tlagl tlbgl tlarl tlbr1 plagl plbgl plarl
plbrl audiol pressedl

STATE2 =
crossing? req2 tlag2 tlbg2 tlar2 tlbr2 plag2 plbg2 plar2
plbr2 audio? pressed?2

TRANSITION[STATEQ|[STATE1] =

crossingl < req0 N\ — crossing0

reql < pressed0 A — reqQ

tlagl < — crossingl N (— pressed0 V reql)
tlbgl < — crossingl N (— pressed0 V reql)
tlarl < crossingl

tlbrl < crossingl

plagl < crossingl

plbgl < crossingl

plarl < — crossingl

plbrl < — crossingl

audiol < crossingl

109

110 Chapter A Inductive Verification

end

spec INITIAL[STATEQ] =
— pressed(
end

spec KANSOCONDITIONONE =
STATEOQ
and STATEL
and STATE2
and INITIAL[STATEQ]
then TRANSITION[STATEQ]|[STATE]]
and TRANSITION
[STATEL fit
req0 — reql crossing0 — crossingl pressed0 +— pressedl
tlag0 v tlagl tlbg0 — tlbgl tlar0 — tlarl tibr0 — tibril
plag0 — plagl plar0 — plarl plbg0 — plbgl plbr0 — plbri
audiol — audiol]
[STATE2 fit
reql — req2 crossingl — crossing? pressedl — pressed?2
tlagl — tlag2 tlbgl — tlbg2 tlarl — tlar2 tibrl — tibr2
plagl — plag2 plarl — plar2 plbgl — plbg2 plbri — plbr2
audiol — audio2]
then %implies
(tlagl V tlar1l) N = (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tibrl)
% (Initial => phi)%
end

spec KANSOCONDITIONTWO =
STATEOQ

and STATEL

and STATE2

then (tlag0 V tlar0) N — (tlag0 A tlar0)
A (tlbg0 Vv tibr0) N — (tlbg0 A tlbr0)

then TRANSITION[STATEQ]|[STATE]]

and TRANSITION
[STATEL fit
req0 — reql crossing0 — crossingl pressed0 +— pressedl
tlag0 — tlagl tlbg0 — tlbgl tlar0 — tlarl tlbr0 — tlbri
plag0 — plagl plar0 — plarl plbg0 — plbgl plbr0 — plbri
audiol — audiol]
[STATE2 fit
reql — req2 crossingl — crossing? pressedl — pressed?2
tlagl — tlag2 tlbgl — tlbg2 tlarl — tlar2 tibrl — tibr2
plagl — plag2 plarl — plar2 plbgl — plbg2 plbrl — plbr2

111

audiol — audio2]

then %implies
(tlagl V tlarl) N = (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tibrl)

end

112 Chapter A Inductive Verification

Appendix B

Forwards Reachability — Incorrect
Ladder Logic

library ITERATIVE
logic PROPOSITIONAL

spec STATEQ =
crossingl req0 tlag0 tlbg0 tlar0 tlbr0 plag0 plbg0 plar0
plbr0 audio0 pressed(

end

spec STATEL =
crossingl reql tlagl tlbgl tlarl tlbr1 plagl plbgl plarl
plbrl audiol pressedl

end

spec STATE2 =
crossing? req2 tlag2 tlbg2 tlar2 tlbr2 plag2 plbg2 plar2
plbr2 audio? pressed?2

end

spec STATE3 =
crossingsd req3 tlag3 tlbg3 tlar3 tlbr3 plags plbgs plar3
plbr3 audiol pressed3

end

spec STATE4 =

crossing4 req4 tlagq tlbg4 tlar4 tlbr4 plags plbgs plarg
plbr4 audios pressed4
end

113

114 Chapter B Forwards Reachability — Incorrect Ladder Logic

spec STATES =
crossingd reqd tlags tlbgs tlars tlbrs plagh plbgs plars
plbrd audiob pressed5

end

spec STATE6 =
crossingb req6 tlagb tlbg6 tlar6 tlbr6é plagb plbg6 plaré
plbré audio6 pressed6

end

spec STATET =
crossing7 req7 tlag7 tlbg7 tlar7 tlbr7 plag7 plbg7 plar7?
plbr7 audio7 pressed7

end

spec TRANSITION[STATEO|[STATE]] =
crossingl < req0 N\ — crossing0
reql < pressed0 A — req0
tlagl < — crossingl
tlbgl < — crossingl N — pressed(
tlarl < crossingl
tlbrl < crossingl
plagl < crossingl
plbgl < crossingl
plarl < — crossingl
plbrl < — crossingl
audiol < crossingl
end

spec INITIAL[STATEQ] =
- crossingl
- req0
- pressed(
= tlag0
= tlbg0
= tlar0
= tlbro
= plag0
= plbg0
- plar0
= plbr0
= audiol
end

spec FORWARDSITERATION =

it ff

115

and
and
and
and
and
and
and
and
and
then
and

and

and

and

STATEOQ

STATEL

STATE2

STATE3

STATE4

STATED

STATEG

STATE7

INITIAL[STATEO]

TRANSITION[STATEO][STATE1]

TRANSITION

[STATEL fit

req0 — reql crossing0 — crossingl pressed0 +— pressedl
tlag0 — tlagl tlbg0 — tlbgl tlar0 — tlarl tibr0 — tlbril
plag0 — plagl plar0 — plarl plbg0 — plbgl plbr0 — plbri
audiol — audiol]

[STATE2 fit

reql — req2 crossingl — crossing? pressedl — pressed?
tlagl — tlag2 tlbgl — tlbg2 tlarl — tlar2 tibrl — tibr2
plagl — plag2 plarl — plar2 plbgl — plbg2 plbri — plbr2
audiol — audio2]

TRANSITION

[STATE2 fit

req0 — req2 crossingl — crossing? pressed) — pressed?2
tlag0 — tlag2 tlbg0 — tlbg2 tlar0 — tlar2 tlibr0 — tibr2
plag0 — plag2 plar0 — plar2 plbg0 — plbg2 plbr0 — plbr2
audiol — audio2]

[STATE3 fit

reql — req3 crossingl — crossingd pressedl — pressed3
tlagl — tlag3 tlbgl — tlbg3 tlarl — tlar3 tibrl — tibr3
plagl — plags plarl — plars plbgl — plbg3 plbrl — plbr3
audiol — audio3]

TRANSITION

[STATE3 fit

req0 — req3 crossingl — crossing3 pressed) — pressed3
tlag0 +— tlag3 tlbg0 — tlbg3 tlar0 — tlar3 tlibr0 — tibr3
plag0 +— plag3 plar0 — plar3 plbg0 — plbgs plbr0 — plbrs
audiol — audio8]

[STATE4 fit

reql — req) crossingl v+ crossing4 pressedl +— pressed
tlagl — tlag4 tlbgl — tlbg4 tlarl — tlar4 tibrl — tlbr4
plagl — plag4 plarl — plar4 plbgl — plbg4 plbrl — plbr4
audiol — audio4]

TRANSITION

[STATE4 fit

req0 — req4 crossing0 — crossing4 pressed0 — pressed

116 Chapter B Forwards Reachability — Incorrect Ladder Logic

tlag0 — tlag4 tlbg0 — tlbg4 tlar0 — tlars tlbr0 — tibr4
plag0 — plag4 plar0 — plars plbg0 — plbgs plbr0 — plbry
audiol — audio4]
[STATES fit
reql — reqd crossingl +— crossingd pressedl — pressedd
tlagl — tlags tlbgl — tlbgs tlarl w— tlars tlbrl — tlbrs
plagl — plagd plarl — plard plbgl — plbgs plbri — plbrs
audiol — audio)]

and TRANSITION
[STATES fit
req0 — reqd crossingl — crossingsd pressed) — presseds
tlag0 — tlagd tlbg0 — tlbgd tlar0 — tlars tibr0 — tibrd
plag0 — plagd plar0 — plard plbg0 — plbgs plbr0 — plbrs
audiol — audio)]
[STATEG fit
reql — reqb crossingl +— crossingb pressedl — pressed6
tlagl — tlagb tlbgl — tlbg6 tlarl w— tlar6 tlbrl — tibr6
plagl — plag6 plarl — plar6 plbgl — plbg6 plbri — plbré
audiol — audioG]

and TRANSITION
[STATEG fit
req0 — reqb crossingl — crossingb pressed) — pressed6
tlag0 — tlagb tlbg0 — tlbg6 tlar0 — tlar6 tibr0 — tibré
plag0 — plag6 plar0 — plar6 plbg0 — plbg6 plbr0 — plbré
audiol — audiol]
[STATET fit
reql — req7 crossingl v+ crossing7 pressedl +— pressed7
tlagl — tlag7 tlbgl — tlbg7 tlarl — tlar7 tibrl — tibr7
plagl — plag7 plarl — plar7 plbgl — plbg7 plbrl — plbr7
audiol — audio]

and tt < true
I < false

then %implies
(tlagl V tlarl) A = (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tibrl)

%(T1)%
(tlag2 V tlar2) A = (tlag2 A tlar2) A (tlbg2 V tlbr2)
A = (tlbg2 N tlbr2)

%(T2)%
(tlag3 V tlar3) A = (tlag3 A tlar3) A (tlbg3 V tlbr3)
A = (tlbg3 A tibr3)

%(T3)%
(tlag4 V tlarf) N = (tlagsd A tlarf) A (tlbgs V tlbrs)
A = (tlbg4 N tlbrs)

%(T4)%

(tlags V tlar5) A = (tlags A tlar5) A (tlbgh V tlbrd)

117

A = (tlbgs A tlbrs)

(tlag6 V tlar6) N — (tlag6 A tlar6) A (tlbg6 \V tlbr6)
A = (tlbg6 N tibr6)

(= (crossingl < crossing0) V = (reql < req0)
V = (pressedl < pressed0) V = (tlagl < tlag0))
A (= (crossing2 < crossing0) V — (req2 < req0)

V = (pressed? < pressed0) V = (tlag2 < tlag0))
A (= (crossing2 < crossingl) V — (req2 < reql)

V = (pressed? < pressedl) V = (tlag2 < tlagl))
A (= (crossing3 < crossing0) V = (req3 < req0)

V = (pressed3 < pressed0) V — (tlag3 < tlag0))
A (= (crossing3 < crossingl) V — (req3 < reql)

V = (pressed3 < pressedl) V — (tlag3 < tlagl))
A (= (crossing3 < crossing2) V — (req3 < req2)

V = (pressed3 < pressed2) V - (tlag3 < tlag2))
A (= (crossing < crossing0) V — (req4 < req0)

V = (pressed) < pressed0) V — (tlag) < tlag0))
A (= (crossing < crossingl) V — (req} < reql)

V = (pressed4 < pressedl) V = (tlag) < tlagl))
A (= (crossing < crossing2) V — (req} < req2)

V = (pressed] < pressed2) V — (tlagj < tlag2))
A (= (crossing4 < crossing3) V — (reqd < req3)

V = (pressed] < pressed3) V — (tlag) < tlag3))
A (= (crossings < crossing0) V — (req5 < req0)

V = (pressed5 < pressed0) V — (tlagh < tlag0))
A (= (crossingh < crossingl) V — (reqs < reql)

V = (pressed5 < pressedl) V = (tlags < tlagl))
A (= (crossingd < crossing2) V — (reqs < req2)

V = (pressed5 < pressed2) V = (tlags < tlag2))
A (= (crossings < crossing3) V — (reqh < req3)

V = (pressed5 < pressed3) V = (tlags < tlag3))
A (= (crossings < crossing4) V — (regh < req)

V = (pressed5 < pressed4) V — (tlags < tlag4))
A (= (crossing6 < crossing0) V — (reqb6 < req0)

V = (pressed6 < pressed0) V — (tlagb < tlag0))
A (= (crossing6 < crossingl) V — (req6 < reql)

V = (pressed6 < pressedl) V = (tlagb < tlagl))
A (= (crossing6 < crossing2) V — (req6 < req2)

V = (pressed6 < pressed2) V - (tlagb < tlag2))
A (= (crossing6 < crossing3) V — (reqb < req3)

V = (pressed6 < pressed3) V — (tlagb < tlag3))
A (= (crossing6 < crossing4) V — (req6 < reqs)

V = (pressed6 < pressed4) V — (tlagb < tlag)))
A (= (crossing6 < crossingd) V — (reqb6 < req5)

%(T5)%

%(T6)%

118 Chapter B Forwards Reachability — Incorrect Ladder Logic

V = (pressed6 < pressed))
V = (tlagb < tlagh)) = ((crossing7 < crossingt)
A (req7 < reqb)
A (pressed7 < pressed6)
A (tlag7 < tlagb))
V ((crossing7 < crossing5)
A (req7 < reqh)
A (pressed7 < pressed5)
A (tlag7 < tlagh))
V ((crossing7 < crossing4)
A (req7 < reqs)
A (pressed7 < pressed})
A (tlag7 < tlags))
V ((crossing7 < crossing3)
A (req7 < req3)
A (pressed? < pressed3)
A (tlag7 < tlag3))
V ((crossing7 < crossing?2)
A (req? < req?2)
A (pressed7 < pressed2)
A (tlag7 < tlag?2))
V ((crossing7 < crossingl)
A (req7 < reql)
A (pressed7 < pressedl)
A (tlag7 < tlagl))
% (inclusion) %
end

Appendix C

Forward Reachability with
Inclusion Check

library ITERATIVE
logic PROPOSITIONAL

spec STATEQ =
crossingl req0 tlag0 tlbg0 tlar0 tlbr0 plag0 plbg0 plar0
plbr0 audio0 pressed(

end

spec STATEL =
crossingl reql tlagl tlbgl tlarl tlbr1 plagl plbgl plarl
plbrl audiol pressedl

end

spec STATE2 =
crossing? req2 tlag2 tlbg2 tlar2 tlbr2 plag2 plbg2 plar2
plbr2 audio? pressed?2

end

spec STATE3 =
crossingsd req3 tlag3 tlbg3 tlar3 tlbr3 plags plbgs plar3
plbr3 audiol pressed3

end

spec STATE4 =

crossing4 req4 tlagq tlbg4 tlar4 tlbr4 plags plbgs plarg
plbr audios pressed4
end

119

120 Chapter C' Forward Reachability with Inclusion Check

spec STATES =
crossingd reqd tlags tlbgs tlars tlbrs plagh plbgs plars
plbrd audiob pressed5

end

spec STATE6 =
crossingb req6 tlagb tlbg6 tlar6 tlbr6é plagb plbg6 plaré
plbré audio6 pressed6

end

spec STATET =
crossing7 req7 tlag7 tlbg7 tlar7 tlbr7 plag7 plbg7 plar7?
plbr7 audio7 pressed7

end

spec TRANSITION[STATEO|[STATE]] =
crossingl < req0 N\ — crossing0
reql < pressed0 A — req0
tlagl < — crossingl N (— pressed0 V reql)
tlbgl < — crossingl N (— pressed0 V reql)
tlarl < crossingl
tlbrl < crossingl
plagl < crossingl
plbgl < crossingl
plarl < — crossingl
plbrl < — crossingl
audiol < crossingl
end

spec INITIAL[STATEQ] =
- crossingl
- req0
- pressed(
= tlag0
= tlbg0
= tlar0
= tlbro
= plag0
= plbg0
- plar0
= plbr0
= audiol
end

spec SAFE =

it ff

121

and
and
and
and
and
and
and
and
and
then
and

and

and

and

STATEOQ

STATEL

STATE2

STATE3

STATE4

STATED

STATEG

STATE7

INITIAL[STATEO]

TRANSITION[STATEO][STATE1]

TRANSITION

[STATEL fit

req0 — reql crossing0 — crossingl pressed0 +— pressedl
tlag0 — tlagl tlbg0 — tlbgl tlar0 — tlarl tibr0 — tlbril
plag0 — plagl plar0 — plarl plbg0 — plbgl plbr0 — plbri
audiol — audiol]

[STATE2 fit

reql — req2 crossingl — crossing? pressedl — pressed?
tlagl — tlag2 tlbgl — tlbg2 tlarl — tlar2 tibrl — tibr2
plagl — plag2 plarl — plar2 plbgl — plbg2 plbri — plbr2
audiol — audio2]

TRANSITION

[STATE2 fit

req0 — req2 crossingl — crossing? pressed) — pressed?2
tlag0 — tlag2 tlbg0 — tlbg2 tlar0 — tlar2 tlibr0 — tibr2
plag0 — plag2 plar0 — plar2 plbg0 — plbg2 plbr0 — plbr2
audiol — audio2]

[STATE3 fit

reql — req3 crossingl — crossingd pressedl — pressed3
tlagl — tlag3 tlbgl — tlbg3 tlarl — tlar3 tibrl — tibr3
plagl — plags plarl — plars plbgl — plbg3 plbrl — plbr3
audiol — audio3]

TRANSITION

[STATE3 fit

req0 — req3 crossingl — crossing3 pressed) — pressed3
tlag0 +— tlag3 tlbg0 — tlbg3 tlar0 — tlar3 tlibr0 — tibr3
plag0 +— plag3 plar0 — plar3 plbg0 — plbgs plbr0 — plbrs
audiol — audio8]

[STATE4 fit

reql — req) crossingl v+ crossing4 pressedl +— pressed
tlagl — tlag4 tlbgl — tlbg4 tlarl — tlar4 tibrl — tlbr4
plagl — plag4 plarl — plar4 plbgl — plbg4 plbrl — plbr4
audiol — audio4]

TRANSITION

[STATE4 fit

req0 — req4 crossing0 — crossing4 pressed0 — pressed

122 Chapter C' Forward Reachability with Inclusion Check

tlag0 — tlag4 tlbg0 — tlbg4 tlar0 — tlars tlbr0 — tibr4
plag0 — plag4 plar0 — plars plbg0 — plbgs plbr0 — plbry
audiol — audio4]
[STATES fit
reql — reqd crossingl +— crossingd pressedl — pressedd
tlagl — tlags tlbgl — tlbgs tlarl w— tlars tlbrl — tlbrs
plagl — plagd plarl — plard plbgl — plbgs plbri — plbrs
audiol — audio)]

and TRANSITION
[STATES fit
req0 — reqd crossingl — crossingsd pressed) — presseds
tlag0 — tlagd tlbg0 — tlbgd tlar0 — tlars tibr0 — tibrd
plag0 — plagd plar0 — plard plbg0 — plbgs plbr0 — plbrs
audiol — audio)]
[STATEG fit
reql — reqb crossingl +— crossingb pressedl — pressed6
tlagl — tlagb tlbgl — tlbg6 tlarl w— tlar6 tlbrl — tibr6
plagl — plag6 plarl — plar6 plbgl — plbg6 plbri — plbré
audiol — audioG]

and TRANSITION
[STATEG fit
req0 — reqb crossingl — crossingb pressed) — pressed6
tlag0 — tlagb tlbg0 — tlbg6 tlar0 — tlar6 tibr0 — tibré
plag0 — plag6 plar0 — plar6 plbg0 — plbg6 plbr0 — plbré
audiol — audiol]
[STATET fit
reql — req7 crossingl v+ crossing7 pressedl +— pressed7
tlagl — tlag7 tlbgl — tlbg7 tlarl — tlar7 tibrl — tibr7
plagl — plag7 plarl — plar7 plbgl — plbg7 plbrl — plbr7
audiol — audio]

and tt < true
I < false

then %implies
(tlagl V tlarl) A = (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tibrl)

%(T1)%
(tlag2 V tlar2) A = (tlag2 A tlar2) A (tlbg2 V tlbr2)
A = (tlbg2 N tlbr2)

%(T2)%
(tlag3 V tlar3) A = (tlag3 A tlar3) A (tlbg3 V tlbr3)
A = (tlbg3 A tibr3)

%(T3)%
(tlag4 V tlarf) N = (tlagsd A tlarf) A (tlbgs V tlbrs)
A = (tlbg4 N tlbrs)

%(T4)%

(tlags V tlar5) A = (tlags A tlar5) A (tlbgh V tlbrd)

123

A = (tlbgs A tlbrs)

(tlag6 V tlar6) N — (tlag6 A tlar6) A (tlbg6 \V tlbr6)
A = (tlbg6 N tibr6)

(= (crossingl < crossing0) V = (reql < req0)
V = (pressedl < pressed0) V = (tlagl < tlag0))
A (= (crossing2 < crossing0) V — (req2 < req0)

V = (pressed? < pressed0) V = (tlag2 < tlag0))
A (= (crossing2 < crossingl) V — (req2 < reql)

V = (pressed? < pressedl) V = (tlag2 < tlagl))
A (= (crossing3 < crossing0) V = (req3 < req0)

V = (pressed3 < pressed0) V — (tlag3 < tlag0))
A (= (crossing3 < crossingl) V — (req3 < reql)

V = (pressed3 < pressedl) V — (tlag3 < tlagl))
A (= (crossing3 < crossing2) V — (req3 < req2)

V = (pressed3 < pressed2) V - (tlag3 < tlag2))
A (= (crossing < crossing0) V — (req4 < req0)

V = (pressed) < pressed0) V — (tlag) < tlag0))
A (= (crossing < crossingl) V — (req} < reql)

V = (pressed4 < pressedl) V = (tlag) < tlagl))
A (= (crossing < crossing2) V — (req} < req2)

V = (pressed] < pressed2) V — (tlagj < tlag2))
A (= (crossing4 < crossing3) V — (reqd < req3)

V = (pressed] < pressed3) V — (tlag) < tlag3))
A (= (crossings < crossing0) V — (req5 < req0)

V = (pressed5 < pressed0) V — (tlagh < tlag0))
A (= (crossingh < crossingl) V — (reqs < reql)

V = (pressed5 < pressedl) V = (tlags < tlagl))
A (= (crossingd < crossing2) V — (reqs < req2)

V = (pressed5 < pressed2) V = (tlags < tlag2))
A (= (crossings < crossing3) V — (reqh < req3)

V = (pressed5 < pressed3) V = (tlags < tlag3))
A (= (crossings < crossing4) V — (regh < req)

V = (pressed5 < pressed4) V — (tlags < tlag4))
A (= (crossing6 < crossing0) V — (reqb6 < req0)

V = (pressed6 < pressed0) V — (tlagb < tlag0))
A (= (crossing6 < crossingl) V — (req6 < reql)

V = (pressed6 < pressedl) V = (tlagb < tlagl))
A (= (crossing6 < crossing2) V — (req6 < req2)

V = (pressed6 < pressed2) V - (tlagb < tlag2))
A (= (crossing6 < crossing3) V — (reqb < req3)

V = (pressed6 < pressed3) V — (tlagb < tlag3))
A (= (crossing6 < crossing4) V — (req6 < reqs)

V = (pressed6 < pressed4) V — (tlagb < tlag)))
A (= (crossing6 < crossingd) V — (reqb6 < req5)

%(T5)%

%(T6)%

124 Chapter C' Forward Reachability with Inclusion Check

V = (pressed6 < pressed))
V = (tlagb < tlagh)) = ((crossing7 < crossingt)
A (req7 < reqb)
A (pressed7 < pressed6)
A (tlag7 < tlagb))
V ((crossing7 < crossing5)
A (req7 < reqh)
A (pressed7 < pressed5)
A (tlag7 < tlagh))
V ((crossing7 < crossing4)
A (req7 < reqs)
A (pressed7 < pressed})
A (tlag7 < tlags))
V ((crossing7 < crossing3)
A (req7 < req3)
A (pressed? < pressed3)
A (tlag7 < tlag3))
V ((crossing7 < crossing?2)
A (req? < req?2)
A (pressed7 < pressed2)
A (tlag7 < tlag?2))
V ((crossing7 < crossingl)
A (req7 < reql)
A (pressed7 < pressedl)
A (tlag7 < tlagl))
% (inclusion) %
end

Appendix D

Temporal Induction

library ITERATIVE

logic PROPOSITIONAL

spec

end

spec

end

spec

end

spec

end

spec

end

spec

STATEOD =
crossingl req0 tlag0 tlbg0 tlar0 tlbr0 plag0 plbg0 plar0
plbr0 audio0 pressed(

STATEL =
crossingl reql tlagl tlbgl tlarl tlbr1 plagl plbgl plarl
plbrl audiol pressedl

STATE2 =
crossing? req2 tlag2 tlbg2 tlar2 tlbr2 plag2 plbg2 plar2
plbr2 audio? pressed?2

STATE3 =
crossingd req3 tlag3 tlbg3 tlar3 tlbr3 plags plbgs plar3
plbr3 audiol pressed3

STATE4 =

crossing4 req4 tlagq tlbg4 tlar4 tlbr4 plags plbgs plarg
plbry audio pressed4

STATES =
crossingd reqd tlags tlbgd tlars tlbrd plagd plbgs plars

125

126 Chapter D Temporal Induction

plbrd audiob pressed5
end

spec STATE6 =
crossingb reqb tlagb tlbgb tlar6 tlbré plag6 plbg6 plar6
plbr6 audiob pressed6

end

spec STATET =
crossing7 req7 tlag7 tlbg7 tlar7 tlbr7 plag7 plbg7 plar7?
plbr7 audio7 pressed7

end

spec TRANSITION[STATEOQ][STATE]L| =
crossingl < req0 N\ — crossing
reql < pressed0 N\ — req0
tlagl < — crossingl A (— pressed0 V reql)
tlbgl < — crossingl N (— pressed0 V reql)
tlarl < crossingl
tlbrl < crossingl
plagl < crossingl
plbgl < crossingl
plarl & — crossingl
plbrl < — crossingl
audiol < crossingl
end

spec INITIAL[STATEQ] =
- crossingl
- req0
- pressed(
- tlag0
= tlbg0
= tlar0
= tlbr0
= plagl
= plbg0
= plar0
= plbr0
= audiol
end

spec BASE =
STATEOQ
and STATEL
and INITIAL[STATEQ]

127

then TRANSITION[STATEQ]|[STATE]]
then %implies
(tlagl V tlar1l) N — (tlagl A tlarl) A (tlbgl V tlbrl)
A = (tlbgl A tibrl)
% (Base)%
end

spec STEP =
STATEOQ
and STATEL
and STATE2
then TRANSITION[STATEQ]|[STATE]]
and TRANSITION
[STATEL fit
req0 — reql crossing0 — crossingl pressed0 +— pressedl
tlag0 v tlagl tlbg0 — tlbgl tlar0 — tlarl tibr0 — tibril
plag0 +— plagl plar0 — plarl plbg0 — plbgl plbr0 — plbri
audiol — audiol]
[STATE2 fit
reql — req2 crossingl — crossing? pressedl — pressed?2
tlagl — tlag2 tlbgl — tlbg2 tlarl — tlar2 tibrl — tibr2
plagl — plag2 plarl — plar2 plbgl — plbg2 plbrl — plbr2
audiol — audio2]
and (- (crossingl < crossing0) V = (reql < req0)
V = (pressedl < pressed0) V — (tlagl < tlag0))
A (= (crossing2 < crossing0) V — (req2 < req0)
V 1 (pressed2 < pressed0) V — (tlag2 < tlag0))
A (= (crossing2 < crossingl) V — (req2 < reql)
V = (pressed?2 < pressedl) V = (tlag2 < tlagl))
and (tlagl V tlarl) A — (tlagl A tlarl)
A (tlbgl Vv tibr1) A = (tlbgl A tlbrl)
then %implies
(tlag2 V tlar2) A = (tlag2 A tlar2) A (tlbg2 V tlbr2)
A = (tlbg2 N tlbr2)
%(Step)%
end

