
Verification Within The Railway Domain
Our Approach

Real World Interlockings

SAT-based Model Checking
of Train Control Software.

Phillip James Markus Roggenbach

Department of Computer Science
Swansea University, United Kingdom

CALCO-jnr’09

In co-operation with Invensys.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Overview

Verification Within The Railway Domain.

Reachable State Algorithms.

Real World Interlockings.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Railways
Kanso’s Verification
Project Aims

Verification Within The
Railway Domain

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Railways
Kanso’s Verification
Project Aims

Motivation

Metro-link passenger train collides with freight train.
Los Angeles – Sept 2008.

25 people killed, over 100 people injured.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Railways
Kanso’s Verification
Project Aims

Interlockings

A major system responsible for ensuring safety within the railway is
the interlocking system.

T101

T103 T102 T104

Interlocking

Human Signaller

Physical Railway

Programmed Using

Ladder Logic an IEC

standard for PLC’s.

 Safety Condition:

E.G. T103 and T101

not occupied at

same time.

Interlockings control
aspects such as
signals and points.

Interlockings are
written by Invensys in
a logic similar to
propositional logic.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Railways
Kanso’s Verification
Project Aims

Railway Verification in Propositional Logic – Kanso 2008

 𝑜𝑐𝑐(𝑡1) ⋀ 𝑜𝑐𝑐(𝑡2)

...

Safety Condition

Railway Topology Informal Safety Condition

For all

track

segments..

.

Verification Via SAT Solver

1. ¬(𝐼 𝜇

 𝜑 𝜇)

2. ¬(𝜑 𝜇 ∧ 𝑇 𝜇, 𝜇′

 𝜑 𝜇′)

Successful Automated Verification:

 If 𝟏 & 2 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒 then

output “safe”

tion:

Kanso 2008

Ladder Logic

|a|

|c|

|e|

|d|

 (b)

 ¬

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Railways
Kanso’s Verification
Project Aims

Discussion of Kanso’08

Positive:

Successful verification of some safety properties of a real
interlocking.

Problematic:

Unclear: Is a violation reachable?

𝜑 ℎ𝑜𝑙𝑑𝑠

State Space

 Safety condition violated – Trace

required.

 Safety condition violated – State

unreachable

Costly human interaction required.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Railways
Kanso’s Verification
Project Aims

Our Aims

If a counterexample is found, produce an error trace to the
counterexample.

Devise a verification method which ignores unreachable states.

Implement these techniques into a useable verification tool
which works on real world interlockings.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Reachability Algorithms
Knowing when to stop?

Our Approach

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Reachability Algorithms
Knowing when to stop?

SAT-based Model Checking

k-bounded Model Checking

i ← 0
B0 ← {µ | I (µ)}
while i ≤ k do

for µ ∈ Bi , if ¬(ϕ(µ)) ∈ SAT return “unsafe” + trace; stop
Bi+1 ← {µ′ | T (µ, µ′), µ ∈ Bi}
i ← i + 1

return “safe”

Unbounded Model Checking

Change i ≤ k to Bi+1 ⊆ B0 ∪ · · · ∪ Bi .

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Reachability Algorithms
Knowing when to stop?

Some Definitions

Definition: Series of transitions.

We define a series of n transitions Tn in an automaton as follows:

Tn =
∧

0≤i≤n−1

T (Si , Si+1)

where T (Si ,Si+1) is a transition from state Si to state Si+1.

Formula size: O(kn), k number of rungs, n number of iterations.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Reachability Algorithms
Knowing when to stop?

Knowing when to stop?

Definition: Inclusion Property

We define an inclusion check as:

P = In ∧ Tn+1 ⇒ (LFn ⇒
∨

i≤n+1

Sn+1 ⇔ Si)

If P ⇔ true then inclusion has been reached.

Definition: Loop Freedom

An Automaton A is loop free for n transitions if the following holds:

LFn = Tn ∧
∧

0≤i≤j≤n−1

¬(Si = Sj)

Formula size: O(kn2), k number of rungs, n number of iterations.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Real World Interlockings

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Real World Interlocking

Problem size:

Ladder Logic for small train station – about 550 variables.

1 iteration = (approx) 1 second of run-time.

Experiments:

Without inclusion:

Only 500 iterations possible due to state space explosion.
Verification time – 523(s), more iterations: out of memory.

With inclusion:

Only 50 iterations possible due to large formulae.
Verification time – 652(s), more iterations: out of memory.

Slicing needed!

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Program Slicing

Main Idea: Construct a program slice by removing variables/rungs
which have no effect on the safety condition.

Algorithm thanks to Fokking et al.

New correctness statement and proof:

consider reachable states only!

Phillip James Verifying Train Control Software

Program Slicing Example

Slicing a ladder with regard to a safety condition:

(tlag1 ∨ tlar1) ∧ ¬(tlag1 ∧ tlar1) ∧ (tlbg1 ∨ tlbr1) ∧ ¬(tlbg1 ∧ tlbr1).

1 wh i l e (t rue){
2 c r o s s i n g 1 = (r e q 0 && . . .
3 r e q 1 = (p r e s s e d 0 && . . .
4 t l a g 1 = ((not c r o s s i n g 1) . . .
5 t l b g 1 = ((not c r o s s i n g 1) . . .
6 t l a r 1 = c r o s s i n g 1 ;
7 t l b r 1 = c r o s s i n g 1 ;
8 p l a g 1 = c r o s s i n g 1 ;
9 p l b g 1 = c r o s s i n g 1 ;

10 p l a r 1 = (not c r o s s i n g 1) ;
11 p l b r 1 = (not c r o s s i n g 1) ;
12 a u d i o 1 = c r o s s i n g 1 ;
13 }

Figure: Original Ladder

1 wh i l e (t rue){
2 c r o s s i n g 1 = (r e q 0 && . . .
3 r e q 1 = (p r e s s e d 0 && . . .
4 t l a g 1 = ((not c r o s s i n g 1) . . .
5 t l b g 1 = ((not c r o s s i n g 1) . . .
6 t l a r 1 = c r o s s i n g 1 ;
7 t l b r 1 = c r o s s i n g 1 ;
8 }

Figure: Sliced Ladder

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Correctness Theorem

Theorem:

Given a ladder logic program P and a safety condition ϕ,

A(P) |= ϕ⇔ A(P|ϕ) |= ϕ.

Proof Sketch: Argue on reachability of states in each automaton.

Implementation of slicing in Haskell.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Program Slicing – Some Results

Our Results on Real World Interlockings:

Ladder with approx 550 variables reduced to ladder with 62
variables.

Without Inclusion:

Up to 2000 iterations 4553(s), more iterations: out of memory.

With Inclusion:

Up to 200 iteration 1554(s), more iterations: out of memory.

Underlying prover: Equinox.

Commercial Tool: about 100 iterations.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Overall Verification Results

k-bounded Model Checking:

Property Kanso’08 k-bounded MC

ϕ1 Safe Safe

ϕ2 Unsafe Counterexample (4 iterations)
ϕ3 Unsafe Counterexample (3 iterations)
ϕ4 Unsafe Counterexample (1 iteration)

Unbounded Model Checking:

Inclusion not reached in 200 iterations.

Current slices: ∼ 60 variables.

Experiments show: ∼ 30 variables work out.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Conclusion

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Summary

New slicing Theorem w.r.t. reachable states only.

Slicing works very well to reduce formulae size.

Verified succesfully two real interlockings:
For all given safety conditions we either -

proved safety, or
returned counter example.

Open problem (with no impact to practice?): Inclusion not
reached, formulae still too big.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Future Work

Remove functional dependencies: to reduce formulae size
further.

Look at modelling using First Order logic.

Explore compositional reasoning of ladder logic templates
used by Invensys.

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Thanks!

Phillip James Verifying Train Control Software

Verification Within The Railway Domain
Our Approach

Real World Interlockings

Experiments
Dealing With State Space Explosion
Verification Results

Automata Definition

Definition: Automaton

Given a ladder logic program P over V = I ∪ O ∪ O ′. An
automaton is a triple (S , I ,→), where

S = {ν|ν : I ∪ U → {0, 1}}.
I = {ν ′|ν |= ¬Icond , ν ∪ ν ′ |= ψP}
ν → ν ′ iff ν ∪ ν ′ |= ψP .

Phillip James Verifying Train Control Software

	Verification Within The Railway Domain
	Railways
	Kanso's Verification
	Project Aims

	Our Approach
	Reachability Algorithms
	Knowing when to stop?

	Real World Interlockings
	Experiments
	Dealing With State Space Explosion
	Verification Results

