
Verification within the Railway Domain
Our Approach

Implementation and Results

Verification of train control systems:
Reducing the complexity

Phillip James

Department of Computer Science
Swansea University, Wales.

BCTCS – April 2010

In co-operation with Invensys

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Overview

Verification within the Railway Domain.

Our Approach.

Modelling.
Slicing.
Reachability Algorithms.

Implementation and Results.

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Kanso’s Verification
Project Aims

Verification within the Railway
Domain

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Kanso’s Verification
Project Aims

Safety within the Railway Domain

An interlocking is major system responsible for enforcing safety.

T101

T103 T102 T104

Interlocking

Human Signaller

Physical Railway

 Programmed Using

Ladder Logic:

describes finite

automaton

Interface between
signaller and the
physical track.

Implemented as single
control loop.

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Kanso’s Verification
Project Aims

Successful Railway Verification – Kanso 2008

For all

track

points...

Safety Condition

𝜑 𝜇

Railway Topology Informal Safety Condition

1. ¬(𝐼 𝜇

 𝜑 𝜇)

2. ¬(𝜑 𝜇 ∧ 𝑇 𝜇, 𝜇′

 𝜑 𝜇′)

Successful Automated Verification:

 If 1 & 2 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒 then

output “safe”

Interlocking Ladder Logic

|a|

|c|

|e|

|d|

 (b)

Initial Condition - 𝐼(𝜇)

and Transition Formula - 𝑇 𝜇, 𝜇′

𝜇, 𝜇′ : 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑡𝑎𝑡𝑒𝑠.

(i.e. - Valuations of propositional variables)

T104

T101

T102 T103

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Kanso’s Verification
Project Aims

Overcoming Limitations and Our Aims

Limitations of Kanso’08

Violations that are unreachable (Invensys).

Production of counterexample trace is not possible.

Invariants require domain knowledge.

Our aims:

A verification method which only considers reachable states.

If a counterexample is found, produce an error trace.

Validate techniques: encode and verify a new interlocking.

Implement these techniques into a usable verification tool.

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Kanso’s Verification
Project Aims

Overcoming Limitations and Our Aims

Limitations of Kanso’08

Violations that are unreachable (Invensys).

Production of counterexample trace is not possible.

Invariants require domain knowledge.

Our aims:

A verification method which only considers reachable states.

If a counterexample is found, produce an error trace.

Validate techniques: encode and verify a new interlocking.

Implement these techniques into a usable verification tool.

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Modelling
Program Slicing
Reachability Algorithms

Our Approach

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Modelling
Program Slicing
Reachability Algorithms

Automata Definition

Definition: Ladder Logic Automaton

Given a ladder logic propositional formula ψP over I ∪ C , define

A(ψP) = (S , Is ,→)

where

S = {µ |µ : I ∪ C → {0, 1}},
µ→ µ′ if µ ;µ′ |= ψP ,

Is = {µ′ |µ |= (
∧

i∈I ¬i), µ ;µ′ |= ψP}

Definition: Satisfaction (verification)

A(ψP) |= ϕ iff ϕ holds for all reachable states in A(ψP).

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Modelling
Program Slicing
Reachability Algorithms

An example automaton

Phillip James Verification of TCS

Program Slicing Example

Slicing a ladder with regard to a safety condition:

(tlag1∨ tlar1)∧¬(tlag1∧ tlar1)∧ (tlbg1∨ tlbr1)∧¬(tlbg1∧ tlbr1).

1 wh i l e (t rue){
2 c r o s s i n g 1 = (r e q 0 && . . .
3 r e q 1 = (p r e s s e d 0 && . . .
4 t l a g 1 = ((not c r o s s i n g 1) . . .
5 t l b g 1 = ((not c r o s s i n g 1) . . .
6 t l a r 1 = c r o s s i n g 1 ;
7 t l b r 1 = c r o s s i n g 1 ;
8 p l a g 1 = c r o s s i n g 1 ;
9 p l b g 1 = c r o s s i n g 1 ;

10 p l a r 1 = (not c r o s s i n g 1) ;
11 p l b r 1 = (not c r o s s i n g 1) ;
12 a u d i o 1 = c r o s s i n g 1 ;
13 }

1 wh i l e (t rue){
2 c r o s s i n g 1 = (r e q 0 && . . .
3 r e q 1 = (p r e s s e d 0 && . . .
4 t l a g 1 = ((not c r o s s i n g 1) . . .
5 t l b g 1 = ((not c r o s s i n g 1) . . .
6 t l a r 1 = c r o s s i n g 1 ;
7 t l b r 1 = c r o s s i n g 1 ;
8 }

Algorithm by Fokkink’98 gives new sliced transition formula ψPϕ.

Verification within the Railway Domain
Our Approach

Implementation and Results

Modelling
Program Slicing
Reachability Algorithms

New Program Slicing Theorem

Correctness differs to Fokkink’98:

We explicitly consider the reachable states of an automaton.

Theorem: Correctness of Slicing

Given a ladder logic propositional formula ψP for some ladder logic
program P, its corresponding automaton A(ψP) and a safety
condition ϕ,

A(ψP) |= ϕ⇔ A(ψPϕ) |= ϕ.

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Modelling
Program Slicing
Reachability Algorithms

One Verification Algorithm

Definition: Formulae for Temporal Induction

Define:

Basen = I (W0) ∧ Tn ⇒ ϕn.

Stepn = Tn+1 ∧ LFn+1 ∧ ϕn ⇒ ϕ(Wn,Wn+1)

Temporal Induction Algorithm

n← 0
while true do

if ¬Basen is satisfiable return trace
if ¬Stepn is unsatisfiable return “Safe”
n← n + 1

od

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Modelling
Program Slicing
Reachability Algorithms

Further Algorithms Studied

Along with Temporal Induction, the following have been explored
and implemented:

Bounded and unbounded model checking via:

Forward and backward iteration.
Formulating inclusion checks.

Applying slicing to each approach:

Reduction from 600 to 60 rungs (approx).

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Implementation and Results

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Improvements and Verification Results

Overall the tool from Kanso’08 has been improved:

Overall software architecture has been simplified.

Extended to allow verification of new interlocking.

Extended with various verification techniques.

Improved verification time (From minutes to seconds).

The tool has been used to verify 2 interlockings where:

Verification times were in the region of seconds.

All safety properties were
1 verified, or
2 a counterexample trace was generated.

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Counter Example Traces

.

.
v8253_1__EFM_1 <=> $false
v8253_1__EFM_2 <=> $false
v8253_1__F_0 <=> $false
v8253_1__F_1 <=> $false
v8253_1__F_2 <=> $true
v8253_1__F_3 <=> $false
v8253_1__FM_0 <=> $false
v8253_1__FM_1 <=> $true
v8253_1__FM_2 <=> $true
v8253_1__FM_3 <=> $false
.
.

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Summary and Future Work

Overall the main results have been:

The successful verification of 2 interlockings.

Improved verification tool (Speed and Architecture).

Correctness result for slicing.

In the future we wish to explore:

Further reduction via functional dependency removal.

Using a higher level language with domain specific data types.

Compositional verification and tool integration.

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Functional Dependency Example

1 wh i l e (t rue){
2 c r o s s i n g 1 = (r e q 0 && . . .
3 r e q 1 = (p r e s s e d 0 && . . .
4 t l a g 1 = ((not c r o s s i n g 1) . . .
5 t l b g 1 = ((not c r o s s i n g 1) . . .
6 t l a r 1 = c r o s s i n g 1 ;
7 t l b r 1 = c r o s s i n g 1 ;
8 p l a g 1 = c r o s s i n g 1 ;
9 p l b g 1 = c r o s s i n g 1 ;

10 p l a r 1 = (not c r o s s i n g 1) ;
11 p l b r 1 = (not c r o s s i n g 1) ;
12 a u d i o 1 = c r o s s i n g 1 ;
13 }

1 wh i l e (t rue){
2 c r o s s i n g 1 = (r e q 0 && . . .
3 r e q 1 = (p r e s s e d 0 && . . .
4 }

Finally re-write safety condition in terms of these.

Phillip James Verification of TCS

Verification within the Railway Domain
Our Approach

Implementation and Results

Thanks!

Phillip James Verification of TCS

	Verification within the Railway Domain
	Kanso's Verification
	Project Aims

	Our Approach
	Modelling
	Program Slicing
	Reachability Algorithms

	Implementation and Results

