Verification of train control systems: Reducing the complexity

Phillip James

Department of Computer Science Swansea University, Wales.

BCTCS – April 2010

In co-operation with Invensys

Overview

- Verification within the Railway Domain.
- **Our Approach.**
	- Modelling.
	- Slicing.
	- Reachability Algorithms.
- Implementation and Results.

[Kanso's Verification](#page-4-0) [Project Aims](#page-5-0)

Verification within the Railway Domain

[Kanso's Verification](#page-4-0) [Project Aims](#page-5-0)

Safety within the Railway Domain

An interlocking is major system responsible for enforcing safety.

- Interface between signaller and the physical track.
- Implemented as single control loop.

[Kanso's Verification](#page-4-0) [Project Aims](#page-5-0)

Successful Railway Verification – Kanso 2008

Phillip James [Verification of TCS](#page-0-0)

Overcoming Limitations and Our Aims

Limitations of Kanso'08

- Violations that are unreachable (Invensys).
- Production of counterexample trace is not possible.
- • Invariants require domain knowledge.

Overcoming Limitations and Our Aims

Limitations of Kanso'08

- Violations that are unreachable (Invensys).
- Production of counterexample trace is not possible.
- Invariants require domain knowledge.

Our aims:

- A verification method which only considers reachable states.
- If a counterexample is found, produce an error trace.
- Validate techniques: encode and verify a new interlocking.
- • Implement these techniques into a usable verification tool.

Our Approach

[Modelling](#page-8-0) [Reachability Algorithms](#page-12-0)

Automata Definition

Definition: Ladder Logic Automaton

Given a ladder logic propositional formula ψ_P over $I \cup C$, define

$$
A(\psi_P)=(S,I_s,\rightarrow)
$$

where

\n- $$
S = \{\mu \mid \mu : I \cup C \rightarrow \{0, 1\}\},
$$
\n- $\mu \rightarrow \mu'$ if $\mu \circ \mu' \models \psi_P$
\n- $I_s = \{\mu' \mid \mu \models (\bigwedge_{i \in I} \neg i), \mu \circ \mu' \models \psi_P\}$
\n

Definition: Satisfaction (verification)

 $A(\psi_P) \models \varphi$ iff φ holds for all reachable states in $A(\psi_P)$.

An example automaton

Program Slicing Example

Slicing a ladder with regard to a safety condition:

(tlag1∨tlar1)∧¬(tlag1∧tlar1)∧(tlbg1∨tlbr1)∧¬(tlbg1∧tlbr1).

```
while (true)\{2 crossing 1 = ( reg 0 && ...
 3 \mid \text{req1} = (\text{pressed0} \& \& \dots)4 \mid t \mid a \mid t = ((not crossing 1) \dots5 \mid t \mid b g1 = ((not crossing1) \dots6 \mid \text{tlar1} = \text{crossing1};
 7 \mid \text{tlbr1} = \text{crossing1};
 8 \mid p l a g 1 = c r ossing 1;
 9 \mid \text{plbg1} = \text{crossing1};
10 p l a r 1 = ( n ot crossing 1 );
11 p l b r1 = (not crossing 1);
12 audio1 = crossing1;
13
```

```
| while ( true ) \{2 crossing1 = (req0 \& \ldots3 \vert req1 = ( pressed 0 \& \dots4 \mid t \mid a \mid t = ((not crossing 1) \dots5 \mid t \mid b g1 = ((not crossing1) \dots6 \mid \text{tlar1} = \text{crossing1};
7 \mid \text{tlbr1} = \text{crossing1}8 }
```
Algorithm by Fokkink'98 gives new sliced transition formula $\psi_{P\varphi}$.

[Modelling](#page-8-0) [Program Slicing](#page-10-0) [Reachability Algorithms](#page-12-0)

New Program Slicing Theorem

Correctness differs to Fokkink'98:

We explicitly consider the reachable states of an automaton.

Theorem: Correctness of Slicing

Given a ladder logic propositional formula ψ_P for some ladder logic program P, its corresponding automaton $A(\psi_P)$ and a safety condition φ ,

$$
A(\psi_{P}) \models \varphi \Leftrightarrow A(\psi_{P\varphi}) \models \varphi.
$$

[Reachability Algorithms](#page-12-0)

One Verification Algorithm

Definition: Formulae for Temporal Induction

Define:

•
$$
Base_n = I(W_0) \wedge T_n \Rightarrow \varphi_n.
$$

• Step_n =
$$
T_{n+1} \wedge LF_{n+1} \wedge \varphi_n \Rightarrow \varphi(W_n, W_{n+1})
$$

Temporal Induction Algorithm

$$
n \leftarrow 0
$$
\nwhile true do

\nif \neg Base_n is satisfiable return trace

\nif \neg Step_n is unsatisfiable return "Safe"

\n $n \leftarrow n + 1$

\nod

[Modelling](#page-8-0) [Program Slicing](#page-10-0) [Reachability Algorithms](#page-12-0)

Further Algorithms Studied

Along with Temporal Induction, the following have been explored and implemented:

- Bounded and unbounded model checking via:
	- Forward and backward iteration.
	- Formulating inclusion checks.
- Applying slicing to each approach:
	- Reduction from 600 to 60 rungs (approx).

Implementation and Results

Improvements and Verification Results

Overall the tool from Kanso'08 has been improved:

- Overall software architecture has been simplified.
- **•** Extended to allow verification of new interlocking.
- **•** Extended with various verification techniques.
- Improved verification time (From minutes to seconds).

The tool has been used to verify 2 interlockings where:

- Verification times were in the region of seconds.
- All safety properties were
	- **1** verified, or
	- 2 a counterexample trace was generated.

Counter Example Traces

. .

. .

v8253_1__EFM_1 <=> \$false v8253_1__EFM_2 <=> \$false $v8253$ 1 F 0 \le \gt \$false $v8253$ 1 F 1 \le \ge \$false v8253_1__F_2 <=> \$true $v8253$ 1 F 3 \le \ge \$false $v8253$ 1 FM 0 \leq \Rightarrow \$false v8253_1__FM_1 <=> \$true v8253_1__FM_2 <=> \$true $v8253$ 1 FM 3 \leq \geq \$false

Summary and Future Work

Overall the main results have been:

- The successful verification of 2 interlockings.
- **•** Improved verification tool (Speed and Architecture).
- Correctness result for slicing.

In the future we wish to explore:

- **•** Further reduction via functional dependency removal.
- Using a higher level language with domain specific data types.
- **Compositional verification and tool integration.**

Functional Dependency Example

1 w h i l e (t r u e){ 2 c r o s s i n g 1 = (r e q 0 && . . . 3 r e q 1 = (p r e s s e d 0 && . . . 4 t l a g 1 = ((n o t c r o s s i n g 1) . . . 5 t l b g 1 = ((n o t c r o s s i n g 1) . . . 6 t l a r 1 = c r o s s i n g 1 ; 7 t l b r 1 = c r o s s i n g 1 ; 8 p l a g 1 = c r o s s i n g 1 ; 9 p l b g 1 = c r o s s i n g 1 ; 10 p l a r 1 = (n o t c r o s s i n g 1) ; 11 p l b r 1 = (n o t c r o s s i n g 1) ; 12 a u d i o 1 = c r o s s i n g 1 ; 13 }

```
1| while ( true ) {
2 crossing1 = (req0 && \,\dots\,3 \vert req1 = ( pressed 0 \& \dots\overline{4}
```
Finally re-write safety condition in terms of these.

Thanks!