
Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Verifying Train Control Software – Using
SAT-based Model Checking.

Phillip James

Department of Computer Science
Swansea University, United Kingdom

April 21, 2010

In co-operation with Invensys.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Overview

Verification Within The Railway Domain.

Reachable State Algorithms.

Example Application.

Ideas On Tackling The State Space Explosion.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Railways
Kanso’s Verification
Project Aims

Verification Within The
Railway Domian

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Railways
Kanso’s Verification
Project Aims

Motivation

Metrolink passanger train collides with freight train.
Los Angeles – Sept 2008.

25 people killed, over 100 people injured!

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Railways
Kanso’s Verification
Project Aims

Interlockings

A major system responsible for ensuring railway safety is the
railway interlocking.

T101

T103 T102 T104

Interlocking

Human Signaller

Physical Railway

 Programmed Using

Ladder Logic:

describes finite

automaton

Interlockings control
aspects such as
signals and points.

Interlockings are
witten using a logic
language similar to
propositional logic.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Railways
Kanso’s Verification
Project Aims

Railway Verification in Propositional Logic – Kanso 2008

For all

track

points...

𝜑 𝜇

Safety Condition

1. ¬(𝐼 𝜇

 𝜑 𝜇)

2. ¬(𝜑 𝜇 ∧ 𝑇 𝜇, 𝜇′

 𝜑 𝜇′)

Successful Automated Verification:

 If 𝟏 & 2 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑎𝑏𝑙𝑒 then

output “safe”

Railway Topology Informal Safety Condition Interlocking Ladder Logic

|a|

|c|

|e|

|d|

 (b)

T104

T101

T102 T103

Initial Condition - 𝐼(𝜇)

and Transition Formula - 𝑇 𝜇, 𝜇′

𝜇, 𝜇′ : 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑡𝑎𝑡𝑒𝑠.

(i.e. - Valuations of propositional variables)

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Railways
Kanso’s Verification
Project Aims

Problems

Problems with Kanso ’08:

Often there are violations of ¬(ϕ(µ) ∧ T (µ, µ′)→ ϕ(µ′)) that
are unrechable.

𝜑 ℎ𝑜𝑙𝑑𝑠

State Space

 Safety condition violated – Trace

required.

 Safety condition violated – State

unreachable

Approach leads to many unreachable counter examples – “Not
Safe” is returned when in fact program is correct.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Railways
Kanso’s Verification
Project Aims

Our Aims

Our aims:

Devise a verification method which ignores unreachable states.

If a counterexample is found, produce an error trace to the
counterexample.

Implement these techniques into a useable verification tool
which works on real world interlockings.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Reachability Algorithms

Our Approach

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Reachability Algorithms

Addressing Reachability

Forwards Reachability in K Steps – Sheeran et al

i ← 0
B0 ← {µ | I (µ)}
do

Bi+1 ← {µ′|T (µ, µ′)}
for µ ∈ Bi+1, if ¬(ϕ(µ)) ∈ SAT return trace
i ← i + 1

while i ≤ K
return ”K-Safe”

Eliminates unreachable states problem – Only states reachable
from the initial state of the system are verified.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

A Pelican Crossing
Verification

Pelican Crossing Example

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

A Pelican Crossing
Verification

A Pelican Crossing

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

A Pelican Crossing
Verification

Specifying in Hets

Pelican Crossing Ladder Logic (Transition Formula)

spec Transition [State0][State1] =

. crossing1 <=> req0 /\ not crossing0

. req1 <=> pressed0 /\ not req0

. tlag1 <=> not crossing1 /\ (not pressed0 \/ req1)

. tlbg1 <=> not crossing1 /\ (not pressed0 \/ req1)

. tlar1 <=> crossing1

. tlbr1 <=> crossing1

. plag1 <=> crossing1

. plbg1 <=> crossing1

. plar1 <=> not crossing1

. plbr1 <=> not crossing1

. audio1 <=> crossing1

end

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

A Pelican Crossing
Verification

Kanso Approach - Verification Wrongly Fails

Always

green or

red...

 𝑡𝑙𝑎𝑟 ⋁ 𝑡𝑙𝑎𝑔 ⋀ 𝑡𝑙𝑏𝑟 ⋁ 𝑡𝑙𝑏𝑔

...

Safety Condition

Verification:

Kanso 2008

Pelican Crossing Topology Informal Safety Condition Ladder Logic

|a|

|c|

|e|

|d|

 (b)

Not Safe – Due to unreachable

counter examples.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

A Pelican Crossing
Verification

Our Approach Verification Successful

Always

green or

red...

 𝑡𝑙𝑎𝑟 ⋁ 𝑡𝑙𝑎𝑔 ⋀ 𝑡𝑙𝑏𝑟 ⋁ 𝑡𝑙𝑏𝑔

...

Safety Condition

Verification:

Forward K-Step Algorithm

Pelican Crossing Topology Informal Safety Condition Ladder Logic

|a|

|c|

|e|

|d|

 (b)

3-Safe

Meta reasoning: Safe!

Hets & Minisat

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

A Pelican Crossing
Verification

Pelican Crossing

Tool Example.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Results From Pelican Crossing
Further techniques

State Space Explosion

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Results From Pelican Crossing
Further techniques

Insights Gained

Only a fraction of complete state space is reachable.

This should help greatly on larger examples
(212 states in example, 2300 for interlockings).

Possible to make whole process automatic by adding state
inclusion tests.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Results From Pelican Crossing
Further techniques

Methods Of State Space Reduction

Remove variables that depend on similar values.
E.g. if X3,X4 ::= ¬X1 ∧ X2.

Exclude invariants (Physical and Encoding).
E.g. 3 valued data encoded in two bits.

Slicing transition formula, relative to safety condition. E.g.
only include parts of ladder logic that safety condition
depends on.

Phillip James Verifying Train Control Software

Verification Within The Railway Domian
Our Approach

Pelican Crossing Example
State Space Explosion

Results From Pelican Crossing
Further techniques

Summary & Future Work

Forwards reachability approach works well on simple examples:

Eliminating problem of unreachable violating states,

Produces error traces.

We plan to...

Implement backwards reachability algorithm.

Explore performance on real world problems (train control).

Study slicing methods to improve any performance issues.

Phillip James Verifying Train Control Software

	Verification Within The Railway Domian
	Railways
	Kanso's Verification
	Project Aims

	Our Approach
	Reachability Algorithms

	Pelican Crossing Example
	A Pelican Crossing
	Verification

	State Space Explosion
	Results From Pelican Crossing
	Further techniques

