
Timed CSP Simulator

Marc Fontaine1, Andy Gimblett2, Faron Moller2,
Hoang Nga Nguyen2, and Markus Roggenbach2

1 Heinrich-Heine-Universität Düsseldorf, Germany
2 Swansea University, UK

1 Introduction

Time is an integral aspect of computer systems. It is essential for modelling
a system’s performance and also affects its safety or security. Timed Csp [5]
conservatively extends the process algebra CSP with timed primitives, where
real numbers ≥ 0 model how time passes with reference to a single, conceptu-
ally global, clock. While there have been approaches for model checking Timed
Csp [1, 5], the simulation of Timed Csp was considered only recently [2, 6]. In
this poster, we highlight the architecture and a number of selected features of our
Timed Csp Simulator, which is a consolidated, mature version of the research
prototype presented in [2].

2 Architecture

Fig. 1. Timed Csp Simulator’s architecture

Timed Csp Simulator is an extension
of the CSP animator within the open
source tool ProB [3]. In Figure 1,
we illustrate the architecture of the
Timed Csp Simulator which consists
of four main components: a Parser, a
Timed Csp Interpreter, a Simulator
and a GUI. In principle, the simula-
tor works as follows: A Timed Csp
specification is analysed by the Parser
(written in Haskell) and translated to
a representation in Prolog. This rep-
resentation is passed into the Timed
Csp Interpreter (written in Prolog).
The Timed Csp Interpreter imple-
ments the “firing rules” of Timed
Csp’s operational semantics. Process
states and the implementation of firing rules are then used by the Simulator for
determining the set of actions available, the range of timed transitions as well as
their corresponding resultant states. Finally, users interact with the Simulator
through a GUI (written in Tcl/Tk) in order to control the simulation progress.



2 Fontaine, Gimblett, Moller, Nguyen, Roggenbach

3 Features

Timed Csp Simulator is characterised by the following features:
Rational time: Timed Csp Simulator restricts processes to rational time only.
This is reasonable as [4] proves that Timed Csp is closed under rational time, i.e.,
rational processes are closed under action transitions and rational delays. Prolog
supports proper rationals, i.e., rational time can be expressed. In practice, the
limitation to rational time turns out to be negligible. For instance, all examples
of Schneider’s book [5] can be dealt with in our simulator.
Separate firing rules: Although Timed Csp (as well as CSP) has a number of
operators which can be treated as syntactic sugar, e.g., Wait d = Stop .d Skip,
we follow the design of ProB where each supported (untimed or timed) operator
has its own implementation of the corresponding firing rule. This results in a
simulation without change of representation, where ProB can highlight in the
specification text which process parts represent the current state.
Extensive set of operators: Compared to the language as given in [5], Timed
Csp Simulator supports an extra set of untimed operators such as conditionals,
untimed timeout and indexed external choice. To this end, we extend Timed
Csp’s operational semantics in [4].
Computing upper bounds of timed transitions: Based on the simulation
theorem provided in [4], Timed Csp Simulator calculates the largest time step
possible for a Timed Csp process in a recursive way. Consider, for instance, the
process T = (P .e Q) .f R with 0 < e < f and untimed processes P ,Q and
R. In T , the process P is enabled within the time interval [0, e). A time step of
length e (and a τ -transition) leads to the new state Q .f−e R, where P is not
enabled anymore. Thus, the largest time step possible in T is e.
Automatic animation: Timed Csp Simulator supports two animation strate-
gies, where the user selects the number of steps to be performed. Random: At
each step of the animation, the simulator randomly selects an event or time step
available from the interface. Maximal progress: At each step of the animation,
the simulator selects an event or time step available from the interface in the
following priority: (1) randomly select an external event, (2) select the internal
event (3) select the maximal time step from a bounded interval, (4) randomly
select a time step if arbitrary time steps are possible.
Backward compatibility: Timed Csp Simulator is backwards compatible for
untimed CSP specifications. There are two ways to enable the Timed-CSP Simu-
lator in ProB while opening specifications from files. Explicit: Files are named
with the extension “.tcsp”, or Implicit: Files (ended with the extension “.csp”)
contain any timed operator of delay event prefix, wait, timed timeout and timed
interrupt.

4 Example

In order to illustrate the use of Timed Csp Simulator, we apply it to the well-
known level crossing example [5]. This system consists of three components: a



Timed CSP Simulator 3

gate to block the traffic crossing the railway when a train is approaching, a
controller to monitor the approach of trains and to instruct the gate to rise or
lower appropriately, and a train passing by the crossing. Figure 2 presents the

GATE = down.command
100→ down → confirm → GATE

2 up.command
100→ up → confirm → GATE

TRAIN = train.near → near .ind
300→ enter .crossing

20→
leave.crossing → out .ind → TRAIN

CONTROLLER = near .ind → down.command → confirm → CONTROLLER
2 out .ind → up.command → confirm → CONTROLLER

CROSSING = CONTROLLER ‖C GGATE
SYSTEM = TRAIN ‖T C∪GCROSSING

Fig. 2. Timed Csp’s model of the level crossing.

Timed Csp’s model of the level crossing as developed in [5]. It is straight forward
to write this specification in the concrete syntax of Timed Csp Simulator.

In the following, we show two simulations of the level crossing example which
highlight the rational time only and automatic animation features of Timed Csp
Simulator. In Figure 3, we present a timed trace which includes two consecutive

Fig. 3. A trace of two consecutive rational timed evolutions.

timed evolutions. The first timed evolution lasts for 4
15 time unit while the second

for 26
15 time unit. After the two timed evolutions, the global time reaches 30

15 time
unit which is automatically converted into the simpler representation of 2 time
units.

In the second simulation, rather than manually choosing an available ac-
tion at each step of the simulation, we use the automatic animation feature
to quickly generate a long timed trace of the level crossing. Figure 4 shows a
timed trace generated by an animation of 15 transitions, following the maximal
progress strategy. This timed trace illustrates the operation of the crossing as a
train passing by. When the train approaches the crossing (by train.near), the
controller requests the gate to move down (by down.command). The gate per-
forms the action down and replies with a confirmation (by confirm) back to the
controller. After the train has entered and exited the crossing, the controller is
notified (by out .ind) so that it will instruct the gate to rise. At the end of this
timed trace, the global time is 320 time units.

Timed Csp Simulator comes with an comprehensive test suite, derived from
the fundamental algebraic laws of Timed Csp. A typical example is P .5 (Q .3

R) = (P .5 Q) .8 R, with P = a → Stop,Q = b → a → Stop, and R = c →
Stop. Here, we check that simulations of the lhs are possible for the rhs and
vice versa. Though these processes are not of much practical use, they highlight



4 Fontaine, Gimblett, Moller, Nguyen, Roggenbach

Fig. 4. A trace generated by automatic animation.

tricky features of the Timed Csp semantics and provide an argument that Timed
Csp Simulator implements it correctly.

5 Conclusion

We have presented our tool Timed Csp Simulator, which is an extension of
the CSP animator within ProB. We discussed architecture and features of the
simulator. Besides simulating examples given in [5], we extensively use our tool
within the SafeCap project3 in order to explore how the change of signalling
rules affects railway capacity. The ProB team has checked our implementa-
tion and made it available at http://www.stups.uni-duesseldorf.de/ProB/

index.php5/Download. In the future, we plan to complete the simulator and to
apply our tool within further application domains.

Acknowledgement We thank Erwin R. Catesbeiana (Jr.) for inspiring us to
invest the extra time unit.

References

1. J. Dong, P. Hao, J. Sun, and X. Zhang. A reasoning method for Timed CSP based
on constraint solving. Formal Methods and Software Engineering, 2006.

2. M. Dragon, A. Gimblett, and M. Roggenbach. A Simulator for Timed CSP. In
AVoCS’11, 2011.

3. M. Leuschel. The ProB model checker. http://www.stups.uni-duesseldorf.de/

ProB/index.php5/Main_Page.
4. F. Moller, H. N. Nguyen, and M. Roggenbach. Theoretical foundations for simulat-

ing Timed CSP. Technical report, Swansea University, In preparation.
5. S. Schneider. Concurrent and real-time systems: the CSP approach. Wiley, 2000.
6. T. Yamakawa, T. Ohashi, and C. Fukunaga. Development of an ML-based verifica-

tion tool for Timed CSP processes. In CPA’11. IOS Press, 2011.

3 SafeCap’s website: http://safecap.cs.ncl.ac.uk/.


