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Abstract. The safety analysis of interlocking railway systems involves
verifying collision and derailment freedom. In this paper we propose a
structured way of refining track plans, in order to expand track segments
so that they form collections of track segments. We show how the abstract
model can be model checked to ensure the safety properties, which must
also hold in the corresponding concrete track plan, so that we will never
need to model check the concrete track plan directly. We also identify
the minimal number of trains that needs to be considered as part of the
model checking, and we demonstrate the practicality of the approach on
various scenarios.

1 Introduction

Formal verification of railway control software has been identified as one of
the “Grand Challenges” of Computer Science [11]. As is typical with Formal
Methods, this challenge comes in two parts: the first addresses the question
of whether the mathematical models considered are legitimate representations
of the physical systems of concern. The modelling of the systems, as well as of
proof obligations, needs to be faithful. The second part is the question of how
to utilize available technologies, for example model checking or theorem prov-
ing. Whichever verification process is adopted, it needs to be both effective and
efficient.

In [13,12] we proposed a new modelling approach for railway interlockings. We
use CSP||B [15], which combines event-based with state-based modelling. This
reflects the double nature of railway systems, which involves events such as train
movements and, in the interlocking, state based reasoning. In this sense, CSP||B
offers the means for the natural modelling approach we strive for: the formal
models are close to the domain models. To the domain expert, this provides
traceability and ease of understanding. This addresses the first of the above
stated challenges: faithful modelling.

In this paper, we address the question of how to effectively and efficiently ver-
ify various safety properties within our CSP||B models. To this end we develop
a set of abstraction techniques for railway verification that allow the transfor-
mation of complex CSP||B models into less involved ones, prove that they are
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correct, and demonstrate that they allow one to verify a variety of railway sys-
tems via model checking. The first set of abstractions reduces the number of
trains that need to be considered in order to prove safety for an unbounded
number of trains. Their correctness proof involves slicing of event traces. Essen-
tially, these abstractions provide us with finite state models. The second set of
abstractions simplifies the underlying track topology. Here, the correctness proof
utilizes event abstraction specific to our application domain similar to the ones
suggested by Winter in [17]. These abstractions make model checking faster.

Outline. We first introduce our modelling language CSP||B. In Section 3 we
summarise our generic railway modelling approach using CSP||B, as described
in [13,12]. In Section 4, we present our first set of abstraction techniques based on
event traces. Then in Section 5 we present our data abstraction techniques. The
application of the abstraction results is presented via a set of example scenarios
in Section 6. In Section 7 we put our work in the context of related approaches.

2 Background to CSP||B
The CSP||B approach allows us to specify communicating systems using a com-
bination of the B-Method [4] and the process algebra CSP (Communicating
Sequential Processes) [9]. The overall specification of a combined communicat-
ing system comprises two separate specifications: one given by a number of CSP
process descriptions and the other by a collection of B machines. Our aim when
using B and CSP is to factor out as much of the “data-rich” aspects of a sys-
tem as possible into B machines. The B machines in our CSP||B approach are
classical B machines, which are components containing state and operations on
that state. The CSP||B theory [15] allows us to combine a number of CSP pro-
cesses Ps in parallel with machines Ms to produce Ps ‖ Ms which is the parallel
combination of all the controllers and all the underlying machines. Such a par-
allel composition is meaningful because a B machine is itself interpretable as a
CSP process whose event-traces are the possible execution sequences of its op-
erations. The invoking of an operation of a B machine outside its precondition
within such a trace is defined as divergence [14]. Therefore, our notion of consis-
tency is that a combined communicating system Ps ‖ Ms is divergence-free and
also deadlock-free.

A B machine clause declares a machine and gives it a name. The variables
of a B machine define its state. The invariant of a B machine gives the type
of the variables, and more generally it also contains any other constraints on
the allowable machine states. There is an initialisation which determines the
initial state of the machine. The machine consists of a collection of operations
that query and modify the state. Besides this kind of machine we also define
static B machines that provide only sets, constants and properties that do not
change during the execution of the system.
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The language we use to describe the CSP processes for B machines is as
follows:

P ::= e?x !y → P(x ) | P1 � P2 | P1 � P2 | if b then P1 else P2 end |
N (exp) | P1 ‖ P2 | P1 A‖B P2 | P1 ||| P2

The process e?x !y → P(x ) defines a channel communication where x represents
all data variables on a channel, and y represents values being passed along a
channel. Channel e is referred to as amachine channel as there is a corresponding
operation in the controlled B machine with the signature x ←− e(y). Therefore
the input of the B operation y corresponds to the output from the CSP, and
the output x of the B operation to the CSP input. Here we have simplified the
communication to have one output and one input but in general there can be
any number of inputs and outputs. The other CSP operators have the usual CSP
semantics.

For reasoning of CSP||B models we require the following notation.

– Since a B machine is interpretable as a CSP process, the various CSP refine-
ments also apply to CSP||B. In this paper we focus on trace refinement where
P �T Q if traces(Q) ⊆ traces(P). This refinement preserves safety proper-
ties, such as collision freedom or derailment freedom as we shall discuss in
Section 3.

– Furthermore, we apply CSP renaming f (P) and CSP hiding P \ A to CSP
processes, B machines and to CSP||B models, which all semantically repre-
sent sets of traces. Given a set of traces T , f (T ) represents the set of all
traces tr ∈ T where the events are replaced point-wise by the function f ;
T \ A to represent the set of all traces tr ∈ T where the events from the set
A are removed from tr .

– A system run σ (of a CSP||B model) of length n ≥ 0 is a finite sequence

σ = 〈s0, e0, s1, e1, . . . , en−1, sn〉

where the si , i = 0 . . .n, are states of the B machine, and the ei , 1 ≤ i ≤
n − 1, are events – either controlled by CSP and enabled in B when called,
or B events. Here we assume that s0 is a state after initialisation. Given a
system run σ, we can extract its trace of events:

events(σ) = 〈e0, . . . , en−1〉.

3 Modelling and Safety Verification of Railway Systems
Using CSP||B

Together with railway engineers we developed a common view on the information
flow in railways. In physical terms a railway consists of, at least, four different
components. These components are shown in Figure 1. The Controller selects
and releases routes for trains. The Interlocking serves as a safety mechanism
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with regards to the Controller and, in addition, controls and monitors the Track
equipment. The Track equipment consists of elements such as signals, points,
and track circuits (logical names for tracks and points from the track plan as
discussed above; in the railway domain, tracks and track circuits are often con-
fused): signals can show the aspects green or red; points can be in normal position
(leading trains straight ahead) or in reverse position (leading trains to a different
line) and track circuits detect if there is a train on a track. Finally, Trains have a
driver who determines their behaviour. For the purposes of modelling, we make
the assumption that track equipment reacts instantly and is free of defects. The
information flow shown in Figure 1 is as follows: the controller sends a request
message to the interlocking to which the interlocking responds; the interlocking
sends signalling information to the trains; and the trains inform the interlocking
about their movements. The interlocking serves as the system’s clock: messages
can be exchanged once per cycle.
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Fig. 1. Information flow

In this paper, we study vari-
ous track plans, one of which is a
station illustrated in Figure 2(b).
It depicts the scheme plan for
the station, which comprises a
track plan, a control table, and re-
lease tables. (We will discuss Fig-
ure 2(a) in Section 6).

The track plan provides the
topological information of the sta-
tion which consists of 16 tracks
(e.g., the track c TAA), three sig-
nals (e.g., S1), and two points
(e.g., P1). Note that the tracks
include entry and exit tracks on
which trains can “appear” and
“disappear”. These two kinds of
tracks are specially treated during
verification.

An interlocking system gathers train locations, and sends out commands to
control signal aspects and point positions. The control table determines how the
station interlocking system sets signals and points. For each signal, there is one
row describing the condition under which the signal can show proceed. There
are two rows for signal S1: one for the main line (Route A1) and one for the side
line (Route B1). A route comprises tracks and points between two signals. For
example, signal S1 for the main line can only show proceed when point P1 is in
normal (straight) position and tracks c TAA, c TAB , c TAC , c TAD , c TAE ,
c TAF , c TAG are all clear. Here we assume that trains are equipped with an
Automatic Train Protection system which prevents trains from moving over a
red light and therefore, overlaps are not needed, e.g., the overlap for Route A1
would be c TAH . For further discussion on this see [10].
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Control table

Route Normal Reverse Clear

A1 P1 c TAA, c TAB , c TAC , c TAD ,
c TAE , c TAF , c TAG

B1 P1 c TAA, c TAB , c TAC , c TBA,
c TBB , c TBC , c TBD

A2 P2 c TAH , c TAI , c TAJ

B2 P2 c TAH , c TAI , c TAJ

Release tables

P1 Occupied

A1 c TAD

B1 c TBA

P2 Occupied

A2 c TAI

B2 c TAI

Fig. 2. One Station - Abstract (a) and Concrete (b) Track Plan (Scenario 3 from Fig. 4)

The interlocking also allocates locks on points to particular route requests to
keep them locked in position, and releases such locks when trains have passed.
For example, the setting of Route A1 obtains a lock on point P1, and sets it to
normal. The lock is released after the train has passed the point. Release tables
store the relevant track.

In this setting, we consider two safety properties: collision-freedom excludes
two trains occupying the same track; and no-derailment says that whenever a
train enters a point, the point is set to cater for this; e.g., when a train travels
from track c TAG to track c TAH , point P2 is set so that it connects c TAG
and c TAH (and not c TBD and c TAH ). The correct design for the con-
trol table and release tables is safety-critical: mistakes can lead to collision or
derailment.

3.1 CSP||B Modelling of Railways

In previous work [12,13] we have demonstrated that CSP||B caters for railways.
It is possible to read the actual models together with railway engineers in or-
der to validate them. This review demonstrates that the models can be clearly
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understood by railway engineers. Here, we refrain from elaborating on the mod-
elling approach and refer the interested reader to [13] for the details. However,
the concepts from the models central for verification (in Section 4 and Section 5),
namely static and dynamic state representation and also train movements, are
discussed below.

The static state information of a CSP||B model is defined in context machines,
i.e., machines that contain set and function definitions. For example, the names
of all the track circuits is defined in a set called ALLTRACKS. The topology
of the track plan is captured using a collection of relations that capture how
the elements of the track plan are related. For example, next : TRACK ↔
TRACK is a relation between tracks and possible successor tracks. Therefore,
(c TAC , a TAD) and (c TAC , c TBA) are elements of the next relation within
the one-station example in Figure 2.

The Interlocking machine models the dynamics of the system. Its state evolves
over time. It consists of the following variables: pos representing the position of
all trains, nextd representing the current position of all points (and thus the
dynamic relation between tracks and their successors), signalStatus represent-
ing the aspect of each signal, normalPoints representing the points which are
in normal position, reversePoints representing the points which are in reverse
position, and currentLocks representing the current semaphores on points.

In the CSP||B models, a train a can perform one of the following events:
move.a.currp.newp represents a moving from track currp to track newp, nextSig-
nal.a.aspect represents a seeing the particular aspect (red or green) at the next
signal, enter.a.p represents placing a on an entry track p, and exit.a.p represents
a leaving the system. Trains that have left the system can be placed again on an
entry track; we call this behaviour recurring trains. Note that in the situation
where currp and newp are separated by a signal the event move.a.currp.newp is
possible only if this signal shows green.

4 Providing Finite State Models

Our railway models are infinite state in nature. The reason for this is that we
consider train identifiers explicitly. Therefore, it is essential to find bounds for
the number of trains that we need to consider when analysing our models for
safety. In this section we provide two methods: one tailored towards collision
freedom, one designed for derailment freedom.

4.1 Minimum Number of Trains for Verifying Collision

The following theorem turns the question of whether a railway scheme plan is col-
lision free into a finite state problem by reducing the – in principle – unbounded
number of trains to be considered into a finite number:

Theorem 1. Let S be a railway scheme plan with r routes. S is collision free
iff all systems runs with r + 1 recurring trains are collision free.
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Proof. We prove the “if” direction only, as the other direction trivially holds.
We first note that if there are two trains on a route then a collision can occur

(as these two trains are not separated by a signal). Therefore, as long as there is
no collision there will be at most r trains on S . Assuming we have r + 1 trains
there will always be one train available to move onto an entry track. Thus, r +1
recurring trains are sufficient. ��

4.2 Minimum Number of Trains for Verifying Derailment

Regarding derailment, we obtain an even stronger result. The reduction argu-
ment, however, holds only for “reasonable” scheme-plans where the various tables
are free of trivial mistakes with respect to the railway topology. Concretely, we
say that a scheme plan is well-formed if the following conditions hold:

1. Release-Table condition. Locks of a route can only be released by a train
movement on this route (e.g., in Figure 2, there is the lock c TAD on P1 for
route A1; c TAD appears in the clear column of the control table for the
route A1).

2. Clear-Table condition. The clear table of a route contains at least the
tracks of this route (e.g., in Figure 2 route A1 topologically goes from signal
S1 to signal S3 and all tracks from c TAA to c TAG are in the clear column
of the control table for the route A1).

3. Normal/Reverse-Table condition. The normal table or the reverse table
of a route contain at least the points on this route (e.g., in Figure 2 route
A1 topologically goes from signal S1 to signal S3, it includes the only point
P1, and P1 is in the normal column of the control table for the route A1).

4. Route condition. Topologically different routes are distinguishable by point
positions in the control table (e.g., in Figure 2 route A1 and route B1 are
topologically different, point P1 is in the normal column of the control table
for route A1, point P1 is in the reverse column of the control table for route
B1).

5. Lock-Table condition. Routes with different lock tables are distinguish-
able by point positions in the control table (e.g., in Figure 2 route A1 and
route B1 have different lock table entries, namely, c TAD and c TBA re-
spectively, in the control table the position of P1 distinguishes them as seen
above).

The scheme plan of Figure 2 is well-formed.
Note that there is exactly one condition per table (release table, clear table,

normal/reverse table, lock table) plus one condition which links routes as defined
topologically with the route definition in the tables. All five conditions are static
and can easily be decided for a given scheme-plan. It is worthwhile to point out
that well-formedness does not imply the property “no-derailment”:

Observation 1. There exist well-formed scheme-plans with derailment.

For example, altering the scheme plan of Figure 2 by exchanging the position of
point P2 for route A2 and route B2 leads to derailment as explained in Section 3.
This exchange, however, preserves well-formedness.
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Our modelling characterizes only implicitly, which routes which are set. There-
fore, we the following theorem is helpful:

Theorem 2. For all system runs of a well-formed scheme-plans it holds: If a
signal s shows green, then there exists a route r with signal(r) = s which is set.

Then, we establish the following theorem which allows the reduction of the num-
ber of trains for proving derailment freedom:

Theorem 3. For any collision free system run on a well-formed scheme plan
involving k ≥ 1 trains Trains = {a1, . . . , ak} and a train b which does not derail
in this run, there exists a system run involving only the trains {a1, . . . , ak} with
identical movements.

Proof. (Sketch) Let σ be the system with trains in {a1, . . . , ak , b} where b does
not derail. We shall construct another run σ′ which

– does not speak about b, which,
– however, preserves the movement of all trains ai ∈ Trains.

First, we define the set of all events E (b) that are related with the train b:

E (b) := {e ∈ σ | e = move.b.currp.newp
e = nextSignal.b.aspect
e = enter.b.p
e = exit.b.p}

Intuitively, σ′ is obtained from σ by either discarding or replacing events in E (b).
In order to determine how to treat these events, it is necessary to understand
how the train b can influence the trains ai ∈ Trains: (i) b might prevent a train
a ∈ Trains from moving (because a signal in front of a shows red because b uses
a resource); (ii) b might allow a train in Trains to move (a move from b releases
a lock, so that the signal in front of a can change to green). When “taking away”
b from σ our only concern is (ii): we wish to preserve moves. This insight leads to
the definition of the following replacement function replaceb concerning events
(where ε stands for the empty word, i.e., for deletion of the event):

1. replaceb(e) = e if e /∈ E (b)
2. replaceb(move.b.currp.newp) = release.r.bb if there exists a signal s with

currp = homeSignal(s). As move is only enabled if signal s shows green, The-
orem 2 guarantees that there exists a route r which is set. Well-formedness
of the scheme-plan guarantees uniqueness.

3. replaceb(e) = ε if e is any ofmove.b.currp.newp, where currp �= homeSignal(s)
for any signal s , or nextSignal.b.aspect, or enter.b.p, or exit.b.p.

replaceb keeps all events not related to b (1.), releases all locks related to b at
the earliest possible opportunity (2.), and deletes all other events related to b.

In order to show that the constructed σ′ is a system run, we relate states in σ
with those in σ′. Informally, a state S in σ is related to a state T in σ′, written
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as S ≥b T , if (1) for all trains ai it holds that in S and in T (i) their positions
are the same and (ii) they are offerred the same possibilities to move; and (2)
T does not speak about the train b. To capture these ideas formally, we define
that S ≥b T if

1. Compared to S , T just deletes the information regarding b.
T (pos) = S (pos) \ {b �→ track | track ∈ TRACK}

2. Track equipment is in the same state.

S (nextd) = T (nextd) S (signalStatus) = T (signalStatus)
S (normalPoints) = T (normalPoints) S (reversePoints) = T (reversePoints)

3. A route r causes locks in T only if it does so in S :
S (currentLocks [{r}]) = ∅ ⇒ T (currentLocks [{r}]) = ∅ and
T (currentLocks [{r}]) �= ∅ ⇒ S (currentLocks [{r}]) = T (currentLocks [{r}])

Let σ = 〈S0, e0, S1, e1, . . . , en−1, Sn〉, we obtain σ′ in two steps. First, we define
the sequence of events:

events(σ′) = 〈replaceb(e0), . . . , replaceb(en−1)〉
Then, we replace in each step 〈Si , ei , Si+1〉 of σ the result state:

In case of “deletion”, there is
no state change in σ′, e.g.,:
T ε T

≥ b ≥ b

S move.b.currp.newp S ′

In case of “replacement”, states
can change in σ and σ′, e.g.,
T release.R.bb T ′

≥ b ≥ b
S move.b.currp.newp S ′

Finally, we prove that the so constructed σ′ is indeed a system run by induction
on the length of the system run σ. The base case is given by S0 ≥b S0 where
S0 is the initial state which has no trains in and there are no locks for points.
In the induction step we show: (i) if an event e is enabled in S then replaceb(e)
is enabled in the corresponding state; (ii) ≥b is preserved under the execution
under an event e and its corresponding event replaceb(e). Both arguments rely
on the fact that σ is a system run, i.e., is a control flow allowed by the CSP
processes. ��
The condition “collision free” on the system run σ is required, as we “simulate”
the movement of the train b by a route release request. Routes can only be
released if there is no train on the track t directly in front of the corresponding
signal. In the corresponding run σ′, b will not be on track t , as b has been
removed. There might, however, be another train a. We exclude this by the
condition “collision freedom”: if there was a train a on the same track t as train
b, there would be a collision in σ.

Corollary 1. For collision free and well-formed scheme plans holds: if they are
derailment free for one train, then they are derailment free for any number of
trains.
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5 Simplifying Scheme Plans

In this section we prove, by topological argument, that it is sufficient to check a
simple scheme plan for safety in order to establish safety for a complex scheme
plan. The technical means for this is to establish a B refinement.

Fig. 3. Linear Scenario

Let us consider an ex-
ample in order to demon-
strate the effect that
the number of tracks
per route has on model
checking. Figure 3 shows
three track plans. Track
plan (a) has one track
per route, track plan (b)
has two tracks per route,
and track plan (c) has
four tracks per route. Be-
low, we show how the
state space grows in the
number of tracks per
route (illustrated using 3
trains):

number of tracks per abstract track 1 2 4 8 16
number of states 596 806 1472 3483 9615

In the following, we develop and formalise an abstraction mechanism which
reduces the number of tracks per route and thus gives an advantage in model
checking. Figure 2 illustrates our abstraction: part (b) shows a concrete track
plan to which part (a) is the abstract counterpart.

As discussed in Section 3.1, a track plan is essentially given by the set
ALLTRACK of its track circuits and a relation next between them. We use
the prefix a for abstract, and c for concrete when considering two track plans
and the relationship between them. Thus, a ALLTRACK is the abstract set of
track circuits (of tracks and points). Similarly, c ALLTRACK is the concrete
set of track circuits. We assume that these are disjoint, apart from the special
element nullTrack . The relations a next and c next define how track circuits
are connected. Each concrete track circuit is associated with one abstract track
circuit, defined by the following total surjective function:

abs : c ALLTRACK →→ a ALLTRACK

such that abs(nullTrack) = nullTrack .
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The definition of abs for the one-station example is as follows in terms of
relational image:

abs [{c TAA, c TAB , c TAC}] = {a TAA}
abs [{c TBA, c TBB , c TBC , c TBD}] = {a TBA}
abs [{c TAD , c TAE , c TAF , c TAG}] = {a TAB}

abs [{c TAH }] = {a TAC}
abs [{c TAI , c TAJ}] = {a TAD}

There are a number of necessary conditions on the abstraction function abs .
These include prominently:

– Points are preserved under abstraction, i.e., a track circuit belonging to a
point in the concrete topology is mapped to a point in the abstract topology.

– Routes are preserved under abstraction, e.g.,
abs [{c TAD , c TAE , c TAF , c TAG, c TAH }] cannot be {a TBA} since
the set of concrete track circuits is not within one route.

– Any concrete c next pair of track circuits should either both be related to
the same abstract track circuit, or should reflect the relation between an
abstract a next pair, i.e.,

∀ c t1, c t2 • (c t1 �→ c t2) ∈ c next)⇒
abs(c t1) = abs(c t2) ∨ (abs(c t1) �→ abs(c t2)) ∈ a next

For example, a move within the same abstract track circuit is given by
(c TAB �→ c TAC ) ∈ c next ⇒ abs(c TAB) = abs(c TAC ).

Beside the abs function, there are further functions needed in order to describe
the full abstraction between track plans. They allow to formulate further condi-
tions upon the relations defined in a track plan also on the tables, e.g.,

a clearTable o
9 abs

−1 = c clearTable

Our modelling approach works generically for all scheme plans. Thus, given a
concrete and an abstract one, we have two formal models to compare. This
comparison is performed using B refinement and CSP trace refinement. In the
following, we focus on the B refinement.

We establish the refinement relationship between the Interlocking B machines
by relating states with a linking invariant. To this end, we prove that each
operation preserves the linking invariant. The linking invariant consists of three
parts: the relationship between the positions of the trains a pos = c pos o

9abs , the
relationship between the current positions of the points (which follows directly
due to the static relationships), and the relationship between the track equipment
which remains unchanged.

We illustrate the proof by comparing abstract and concrete versions of the
move operation. For example, the concrete move.c TAC .c TAD corresponds to
the abstract move.a.a TAA.a TAB ; here, both have an effect on the B state.



204 F. Moller et al.

In contrast to this, the concrete move.a.c TAB .c TAC corresponds to the ab-
stract move.a.a TAA.a TAA; the latter has no effect on the B state. Therefore,
we can consider the abstract event move.a.a TAA.a TAA as the B operation
skip. In a B refinement, a new concrete event can refine skip. This can be ex-
pressed in the following two lemmas:

Lemma 1 (Renamed move). If (abs(c t1) �→ abs(c t2)) ∈ a next then

abs(c t1), abs(c t2)←− a move(t) � c t1, c t2←− c move(t)

Lemma 2 (New move). If abs(c t1) = abs(c t2) then

c t1, c t2←− skip(t) � c t1, c t2←− c move(t)

As a consequence of the above lemmas (and similar lemmas for all other opera-
tions) the relationship between the abstract machine MA and the concrete one
MC is given by MA �T f (MC \ N ), where f and N are defined by:

f (move.a.currp.newp) = move.a.abs(currp).abs(newp)

N = {move.a.currp.newp | abs(currp) = abs(newp)}
for all trains a in the abstract and the concrete model.

Hence we can now consider the combination of the B machines MA and CSP
processes PA to obtain:

Theorem 4. Let abs be an abstraction function from a concrete topology to an
abstract topology. Let PA ‖ MA be the CSP||B model wrt the abstract topology, let
PC ‖ MC be the CSP||B model wrt the concrete topology, such that both models
are defined over the same set of trains. Let

1. MA �T f (MC \ N ) and
2. PA �T f (PC \ N ).

Then collision (derailment) freedom of PA ‖ MA implies collision (derailment)
freedom of PC ‖ MC .

Proof. We compute:

PA ‖ MA �T f (PC \ N ) ‖ f (MC \ N ) (by conditions 1 and 2)

�T f (PC \ N ‖ MC \ N ) (by distributivity of renaming)

�T f ((PC ‖ MC ) \ N ) (by distributivity of hiding)

With regards to collision freedom, we obtain:

PA ‖ MA is collision free⇒ f ((PC ‖ MC ) \ N ) is collision free

(by trace refinement)

⇔ PC ‖ MC \ N is collision free

(as f (collision) = collision)

⇔ PC ‖ MC is collision free (as collision /∈ N )

Similarly for derailment freedom. ��
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Note that Theorem 4 decomposes the proof obligation into a B proof and a CSP
proof respectively. In order to establish condition 1, we sketched above a general
construction based upon techniques related to B refinement. Condition 2 can be
verified using the model checker FDR on CSP processes only.

6 Example Scenarios of CSP||B Railway Models

In order to demonstrate the effectiveness of our techniques outlined in Section 4
and Section 5 we conducted experiments on five scenarios. The experiments were
carried out using ProB 1.3.5 beta 15 [3] to verify the collision and derailment
freedom of the abstract and concrete track plans using CTL model checking over
the CSP||B models. The number of trains involved is chosen according to the
results of Section 4: collision freedom is checked with number of routes plus one
train, derailment freedom is checked with one train. If the verification is success-
ful then we conclude that the model is right and has the right properties. The
CSP||B models were also required to be divergence- and deadlock-free. Figure 4
summarises that all our scenarios are collision- and derailment-free.

To give an indication of the size of the track plans: scenario 1 has 6 tracks, 0
points, 2 signals and 2 routes; scenario 2 has 10 tracks, 0 points, 2 signals and 2
routes; scenario 3 has 16 tracks, 2 points, 3 signals and 4 routes; scenario 4 has
15 tracks, 1 point, 5 signals and 6 routes, and finally scenario 5 has 22 tracks, 2
points, 9 signals and 10 routes.

Notice that in all scenarios there is a significant reduction in the number of
states being explored, comparing the abstract scenarios with the concrete sce-
narios. In order to achieve the desired verification results, however, abstraction
is necessary only in scenario 4(b).

We gain full verification for the first four scenarios thanks to our two reduction
techniques. Scenario 5 can be checked for derailment freedom, however, it cannot
be checked for collision freedom. Thus, verification is only partial. However, we
make the conjecture that it is possible to strengthen Theorem 1: rather than
establishing collision freedom for number of routes plus one trains, it is sufficient
to verify collision-freedom with two trains only. Figure 4 shows that verification
of the double junction with two trains is possible. The double junction scenario is
one which we have referred to in our previous work [13], it provides an interesting
example of abstraction since the abstraction surrounding one of the points is a
biased one, i.e., the normal position of one of the points remains unchanged in
the abstraction, whereas the reverse position of the point is an abstraction of its
track circuit and another track circuit. We will revisit the topic of abstractions
when, in future work, we come to models which deal with bi-directional track
circuits.

7 Related Work

Several industrial studies have been done on using model checking to verify rail-
way applications, e.g., for example SNCF [2], and it is clear that their formal



206 F. Moller et al.

Scenario Model � Abstract Concrete
Trains States Checked States Checked

1(a) derailment Linear with 2 tracks
per route

1 27 31

1(b) collisions Linear with 2 tracks
per route

3 596 806

2(a) derailment Linear with 4 tracks
per route

1 27 39

2(b) collisions Linear with 4 tracks
per route

3 596 1472

3(a) derailment Station 1 70 203

3(b) collisions Station 5 151,508 968,700

4(a) derailment Single Junction 1 600 756

4(b) collisions Single Junction 7 326,405 Not completed

5(a) derailment Double Junction 1 103,598 158,190

5(b) collisions Double Junction 2 173,846 379,404

5(c) collisions Double Junction 3 Not completed Not completed

Fig. 4. Variations of Five Example Scenarios checked

analysis is industrially important. To put our work into context we must first
clarify that railway verification falls into two categories: the verification of rail-
way designs prior to their implementation and the verification of the implemen-
tation descriptions themselves. Our work is in the first area. A comparison using
different model checkers in the analysis of control tables has been conducted by
Ferrari et al. [6] and falls into the first category. Winter in a recent paper [16]
considers different optimising strategies for model checking using NuSMV and
demonstrates the efficiency of their approach on very large models. These analy-
ses also fall into the first category but the models are flat in structure compared
to our models as they are defined in terms of boolean equations and do not focus
on providing behavioural models. The analysis of interlocking tables (cf. control
tables) by Haxthausen [7] also falls into the first category and is supported by
automated tools that generate the models. The results achieved are comparable
in size to our Single Junction scenario. Cimatti et al. [5] also have had consider-
able success using NuSMV but their analysis is focussed on the implementation
descriptions.

Others have applied theorem proving in the verification of railway interlocking
systems, for example, the Advance FP7 project [1] is developing Event-B models
of such systems and verifying comparable safety properties. Indeed it would be
interesting for us to investigate further the relationship between the combination
of generic proofs and model cecking. In this paper, we have demonstrated that
the data abstraction on the B part of the CSP||B models is generic but more
work will be needed on this when we enrich the models to contain trains which
extend over more than one track circuit and can move in more than one direction.



Model Checking Abstractions of Complex Railway Models 207

The research most closely related to ours is Winter [17]. The way in which the
ASM models are defined closely relates to ours since they have the same concept
of routes, which contain tracks and points, between two signals, and contain a
static and a behavioural definition. Their models are more advanced than ours
since we currently restrict ourselves to have signals in one direction and we do not
include shunting. The simplifications to the Winter models includes combining
multiple track circuits into one provided they are always grouped together in
the control table; this again resonates with the data abstraction we defined in
Section 5, but we formalise the abstraction more explicitly.

8 Conclusion

We have successfully complemented our faithful modelling approach of railway
interlockings as presented in [13,12] by defining abstraction techniques that yield
effective and efficient verification process based on model checking. We illus-
trated this process in terms of various scenarios. The correctness arguments in
Sections 4 provides a new proof technique for event- and state-based reasoning.
Section 5 demonstrates an interesting data abstraction using decomposition.

Heitmeyer in [8] discusses the importance of complete abstractions. Our ab-
stractions are sound. It is future work to investigate if completeness can be
established. In Section 6 we identified that the reduction of Theorem 1 is not
sufficient for complex scheme plans. Here we hope to prove our conjecture that
two trains are sufficient to verify collision freedom. Our current models lack cer-
tain details as discussed in Section 7. Adding these features will allow us to study
more fine grained data abstractions. Following recent discussions with Winter,
we also agree that another obvious optimisation to consider is the decomposition
of track schemes.
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