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Abstract: This paper reports on recent work in verifying railway systems through
CSP||B modelling and analysis. Our motivation is to develop a modelling and ver-
ification approach accessible to railway engineers: it is vital that they can validate
the models and verification conditions, and — in the case of design errors — obtain
comprehendable feedback. In this paper we run through a full production cycle on a
real double junction case study, supplied by our industrial partner, who contributed
at every stage. As our formalization is, by design, near to their way of thinking, they
are comfortable with it and trust it. Without putting much effort on optimization for
verification, the scale of the models analyzed is comparable with the work of other
groups.
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1 Introduction

Formal verification of railway control software has been identified as one of the “Grand Chal-
lenges” of Computer Science [Jac04]. But in respect of this challenge, a question has been asked
by the community: “Where do the axioms come from?” [Fia12]. Bluntly expressing a view
common to the Formal Methods community, Paulson states, “I have seen many pieces of work
spoilt by unrealistic models, incorrect axioms or proofs of irrelevant properties” [Pau12]. The
modelling of systems, as well as of proof obligations, needs to be faithful.

Our paper reports on a case study in which railway engineers and computer scientists together
undertake the exercise of domain engineering and formal modelling. By involving the railway
engineers from the start, we benefit twofold: they provide a realistic case study – a double junc-
tion – and they guide the modelling approach, ensuring that it is natural to the working engineer.
In the context of railways, the double junction case study represents a typical railway node, com-
monly found on any railway network. The rules defining its operation are of moderate size. The
exercise helps to confirm the naturalness of our approach, beyond the previous toy examples we
have carried out, e.g., the mini-alvey benchmark from the literature, see [MNR+12a, MNR+12b].

Here, we use CSP||B [ST05], which combines event-based with state-based modelling. CSP||B
has successfully been applied in domains as diverse as information systems, networks of nano-
robots, and file transmission protocols. It ideally caters for the double nature of railway systems,
which involves events such as train movements and, in the interlocking, state based reasoning.
In this sense, CSP||B offers the means for the natural modelling approach we strive for: the
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formal models are close to the domain models. To the domain expert, this provides traceability
and ease of understanding. Having defined models which the railway engineers are confident are
faithful, the verification tool PROB [LB08] allows us to analyze the obtained models for safety
and liveness and provides meaningful counter example traces if appropriate.

Outline We first introduce the double junction. Then we briefly discuss our modelling lan-
guage CSP||B. In Section 4 we describe our generic modelling approach from [MNR+12a,
MNR+12b] and discuss its advancement for the double junction. This generic model is then
instantiated with the double junction, see Section 5. Finally, we carry out a number of verifica-
tion experiments: these establish that the double junction is safe, and that mistakes in the tables
describing its control lead to error traces meaningful to railway engineers. In Section 7 we put
our contribution in the context of related approaches, and Section 8 concludes the paper.

2 The double junction challenge

In this paper, we model the double junction which was set as a challenge by our industrial partner.
Figure 1 depicts the scheme plan for the double junction, which comprises of a track plan, a
control table, and release tables. This case study contains features that have not been present in
our previous CSP||B railway modelling: the related points (the flank protection, and the treatment
of P103 and P104 as a unit) and the fact that the system is open (i.e., contains entries and exits).
These aspects provide a number of new modelling challenges for our application of CSP||B.

The track plan provides the topological information of the double junction. As given to us
by our industrial partner, it consists of 20 tracks ( e.g., the track AA), six signals (S2, S3, S4,
S5, S16, and S17), and four points (P101, P102, P103, and P104). In order to protect its open
ends, we add three further signals (S1, S8, and S19). Furthermore, we add entry and exit tracks
on which trains can “appear” and “disappear”. This extended track plan, though more complex,
allows us to study safety covering all tracks of the original plan.

An interlocking system gathers train locations, and sends out commands to control signal
aspects and point positions. The control table determines how the double junction interlocking
system sets signals and points for so called routes. A route is a piece of railway on which a
train can travel inbetween two signals. Each route is attached to a signal. For each route, there
is one row describing the condition under which the signal can show proceed for it. There are
two rows for signal S3: one for the main line (Route 3A) and one for the side line (Route 3B).
For example, signal S3 for the main line can only show proceed when point P101 is in normal
(straight) position and tracks AB, AC, AD and AE all are clear. We leave out the rows for the
routes attached to the signals S1, S5, S8, S2, S17, and S19: They don’t involve points; their clear
part consists of one track and possibly an overlap, e.g., for the route on signal S1 of the tracks
AA and AB.

The interlocking also allocates locks on points to particular route requests to keep them locked
in position, and releases such locks when trains have passed. For example, the setting of Route
3B obtains locks on all points, namely P101, P102, P103, and P104, and sets them all to reverse.
The locks are released after the train has passed. Release tables store the relevant track. For
example, the lock 3B can be removed on point P101 when the train has arrived on track BW1.

In this setting, we consider two safety properties: collision-freedom excludes two trains occu-
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Control table

Route Normal Reverse Clear
3A P101 AB, AC, AD, AE
3B P101 P102* AB, AC, BW1, BW2,

P103 P104 CM, CL
4A P101* P102 BV, BW2, BW1, BX,

P103 P104 BY, BZ
16A P102 DR, BX, BY, BZ

* flank protection

Release tables

P101 Occupied
3A AD
3B BW1
4A BX

P102 Occupied
3B CM
4A BY

16A BY

P103 Occupied
3B CM
4A BX

P104 Occupied
3B CM
4A BX

Figure 1: Scheme plan of the double junction.

pying the same track; and no-derailment says that whenever a train enters a point, the point is set
to cater for this; e.g., when a train travels from track DR to track BY, point P102 is set so that it
connects DR and BY (and not BW1 and BY).

The correct design for the control table and release tables is safety-critical: mistakes can lead
to collision or derailment. Our verification approach provides counter-example traces in these
cases – see Section 6.

3 CSP||B

The CSP||B approach [ST05] is an approach that allows us to specify communicating systems
using a combination of the B-Method [Abr96] and the process algebra CSP (Communicating
Sequential Processes) [Hoa85]. The overall specification of a combined communicating system
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is comprised of two separate specifications: one given by a number of CSP process descriptions
and the other by a collection of B machines. Our aim when using B and CSP is to factor out
as much of the “data-rich” aspects of a system as possible into B machines. The B machines
in our CSP||B approach are classical B machines, which are components containing state and
operations on that state. The CSP||B theory allows us to combine a number of CSP processes
Ps in parallel with machines Ms to produce Ps ‖Ms which is the parallel combination of all the
controllers and all the underlying machines. Such a parallel composition is meaningful because a
B machine is itself interpretable as a CSP process whose event-traces are the possible execution
sequences of its operations. The invoking of an operation of a B machine outside its precondition
within such a trace is defined as divergence [Mor90]. Therefore, our notion of consistency is that
a combined communicating system Ps ‖Ms is divergence-free and also deadlock-free.

A B machine consists of a collection of clauses and a collection of operations. The MACHINE

clause declares the abstract machine and gives its name. The VARIABLES clause declares the
variables that are used to carry the state information within the machine. The INVARIANT clause
gives the type of the variables, and more generally it also contains any other constraints on the
allowable machine states. The INITIALISATION clause determines the initial state of the machine.
Operations are given in the format

oo←− op(ii) = PRE P THEN S END

The declaration oo←− op(ii) introduces the operation: it has name op, a (possibly empty) output
list of variables oo, and a (possibly empty) input list of variables ii. The precondition of the
operation is predicate P. This must give the type of any input variables, and can also give
conditions on when the operation can be invoked. If it is invoked outside its precondition then
divergence results. Finally, the body of the operation is S. This is a generalised substitution,
which can consist of one or more assignment statements (in parallel) to update the state or assign
to the output variables. Conditional statements and nondeterministic choice statements are also
permitted in the body of the operation. In combined communicating systems we also define B
machines that do not have operations and only contain sets, constants and invariants. These are
included in order to provide contextual information to a system.

The language we use to describe the CSP processes for B machines is as follows:

P ::= e?x!y→ P(x) | P1 2 P2 | P1 u P2 | if b then P1 else P2 end | N(exp) |
P1 ‖ P2 | P1 A‖B P2 | P1 ||| P2

The process e?x!y→ P(x) defines a channel communication where x represents all data vari-
ables on a channel, and y represents values being passed along a channel. Channel e is referred
to as a machine channel as there is a corresponding operation in the controlled B machine with
the signature x←− e(y). Therefore the input of the operation y corresponds to the output from
the CSP, and the output x of the operation to the CSP input. Here we have simplified the commu-
nication to have one output and one input but in general there can be any number of inputs and
outputs. The external choice, P1 2 P2, is initially prepared to behave either as P1 or as P2, with
the choice being made on occurrence of the first event in the environment. The internal choice,
P1 u P2, is similar, however, the choice is made by the process rather than the environment.
Another form of choice is controlled by the value of a boolean expression in an if expression.
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N(exp) is a call to a process where N is the process name and exp is an expression. The syn-
chronous parallel operator, P1 ‖ P2, executes P1 and P2 concurrently, requiring them to synchro-
nize on all events. The alphabetized parallel operator, P1 A‖B P2, requires synchronisation only
in A∩B, allowing independent performance of events outside this set. Finally, the interleaving
operator, P1 ||| P2, allows concurrent processes to execute completely independently.

4 The general modelling approach

Controller

Interlocking

  Track 

equipment

Trains

Route request, Request response,

Signal and point

settings Track occupation

Signal aspect Current movement

Route release Release response

Figure 2: Information flow.

Together with railway engineers we developed
a common view on the information flow in rail-
ways: physically, a railway consists of (at least)
four different components; see Figure 2. The
Controller selects and releases routes for trains.
The Interlocking serves as a safety mechanism
with regards to the Controller and, in addition,
controls and monitors the Track equipment. The
Track equipment consists of elements such as
signals, points, and track circuits: signals can
show proceed or halt; points can be in normal
position (leading trains straight ahead) or in re-
verse position (leading trains to a different line)
and track circuits detect if there is a train on a track. Finally, Trains have a driver who determines
their behaviour. For simplicity, we make the (unrealistic) assumption that track equipment reacts
instantly and is free of defects.

The information flow shown in Figure 2 suggests that railways should be modelled in an event-
based way: the controller sends a request message to the interlocking to which the interlocking
responds; the interlocking sends signalling information to the trains; and the trains inform the
interlocking about their movements. The interlocking serves as the system’s clock: messages
can be exchanged once per cycle.

The control and release tables as shown in Figure 1 as well as their processing in the interlock-
ing – see the discussion of Figure 4 below – however suggest that railways should be modelled
in an state-based way: if points are in a certain state and tracks are in the state “clear,” then
the signal controlling a route can be set to proceed; if some track is “clear”, then a lock can be
removed from a point. In the following, we develop a modelling approach which is generic in
the scheme plan.

CSP||B caters for this double nature of railways: the interlocking as the “data-rich” component
is modelled as a single, dynamic B machine, the Interlocking machine. It represents the central-
ized control logic of a rail node, which reacts to its environment without taking any initiative.
The Interlocking machine offers to perform events in the form of operations to the two active
system components: the controller and the trains, both of which are modelled as CSP processes.

Trains and Controller run independently of each other, on the CSP level expressed with an
interleaving operator – see Figure 3 (lines 24 and 26). It is an internal decision of the controller
which routes are requested to be set or to be released (lines 2, 3, and 4). Similarly, it is an internal
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1 RW CTRL =
2 ur∈ROUTE (request!r?b→ RW CTRL)
3 u
4 ur∈ROUTE (release!r?b→ RW CTRL)
5
6 TRAIN OFF(t) = enter!t?newp→ TRAIN CTRL(t,newp)
7
8 TRAIN CTRL(t,pos) =
9 pos /∈ EXIT ∧pos ∈ SIGNALHOMES & nextSignal!t?aspect→

10 if aspect == green
11 then
12 move!t.pos?newp→ TRAIN CTRL(t,newp)
13 u
14 stay!t.pos→ TRAIN CTRL(t,pos)
15 else
16 stay!t.pos→ TRAIN CTRL(t,pos)
17 2

18 pos /∈ EXIT ∧pos /∈ SIGNALHOMES &
19 move!t.pos?newp→ TRAIN CTRL(t,newp)
20 u
21 stay!t.pos→ TRAIN CTRL(t,pos)
22 2 . . .
23
24 ALL TRAINS =|||t∈TRAIN TRAIN OFF(t)
25
26 CTRL = RW CTRL ||| ALL TRAINS

Figure 3: CSP control processes for Controller and Trains.

decision of the train (driver) to stay or to move in front of a green signal (line 13) or when there
is no signal (line 20). However, a train has to stop in front of a red signal (line 16). This logic is
sometimes referred to as the driving rules of a train.

The Interlocking machine captures information about the location of trains on tracks using
the pos: TRAIN 7→ ALLTRACK function. In Section 6 we will discuss the reason for this weak
invariant and its impact on safety verification. The machine also captures the current information
about successor tracks through a dynamic function nextd which is dependent upon the position
of the points. Furthermore, the machine captures information about signal settings using the
function signalStatus and point settings using the sets: normalPoints and reversePoints. Finally,
the current locks on points are modelled using currentLocks. The initial state of the model sets all
tracks to being empty, all signals to red, all points to the normal position and no locks are made
on points. This dynamic state is then updated and queried, respectively, in the four operations of
the Interlocking machine.

Figure 4 shows the full B code of a typical operation of the Interlocking machine. It describes
how a release request from the controller is processed. The release is granted provided a number
of conditions is fulfilled (the signal of the route is green, line 6, the are points locked for the
route, line 8, etc.). In such a case, a number of state changes are made (the signal of the route is
set to red, line 15, etc.) and the controller is notified with a “yes” (line 19). Otherwise, the state
does not change and the controller is notified with a “no”.

Figure 6 shows the overall architecture of our modelling. The CSP controller and the In-
terlocking machine are independent of any particular scheme plan. They are supported by a
Topology, a ControlTable, a ReleaseTable, and a Context machine. These four machines encode
the scheme plan and are the parameter in our generic approach. Seen a B machines, these four
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1 bb←− release(route) =
2 PRE route ∈ ROUTE THEN
3 LET emptyTracks = TRACK \ ran(pos) IN
4 IF
5 /* the signal of the route is green */
6 signalStatus(signal(route)) = green∧
7 /* points locked for the route */
8 currentLocks[route] = lockTable[route]∧
9 /* the route is clear */

10 clearTable(route)⊆ emptyTracks∧
11 /* no train is in the track preceding the route (i.e. nothing close enough to go through the red light ) */
12 homeSignal(signal(route)) ∈ emptyTracks
13 THEN
14 /* signal of route to red */
15 signalStatus(signal(route)) := red ||
16 /* release the locks associated with the route */
17 currentLocks := route−C currentLocks ||
18 /* release is successful */
19 bb := yes
20 ELSE
21 bb := no
22 END
23 END
24 END

Figure 4: release operation from Interlocking.

normalTable ∈ ROUTE↔ POINTS ∧
reverseTable ∈ ROUTE↔ POINTS ∧

clearTable ∈ ROUTE→ P(TRACK)

Figure 5: Generic control table definition from ControlTable.

supporting machines are stateless, and provide generic domain definitions; see Figure 5 for a
typical example from the ControlTable machine which splits up the modelling of a control table
into two relations and one function.

Figure 6: Architecture.

As the CSP||B code is easy to read and moreover short,
it is actually possible to discuss and to validate it with rail-
way engineers. This is especially useful for discussing the
algorithms underlying the four operations of the Interlock-
ing machine which they confirmed to be correct. On their
request, we removed an event from our model that should in-
form the train (driver) that there was no signal ahead. They
also confirmed our insight of the dual nature of railways by
stating that they actually developed and still use a program-
ming language for interlockings which offers primitives for
manipulating both events and states.

5 Modelling the double junction

Using the generic model presented in Section 4 we now instantiate the domain specific definitions
with the scheme plan of the double junction. Technically, this means instantiating the set, relation
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ALLTRACK = {AA,AB,AC,AD,AE,BZ,BY,BX,BW1,BW2,BV,BU,
CM,CL,DR,DP,Entry1,Entry2,Entry3,Exit,nullTrack} ;

TRACK = ALLTRACK−{nullTrack}

Figure 7: Datatype definitions for tracks defined in ClosedContext.

and function definitions of the four supporting B machines ControlTable, Topology, ReleaseTable
and Context. We encourage readers to download the complete CSP||B model 1.

We begin with the simplest machine ClosedContext, which provides simple set definitions,
as shown in Figure 7. We specifically include the nullTrack in order to be able to identify the
derailment of a train. As seen above in Figure 5, the ControlTable machine splits up modelling
the control table into two relations and a function. These are now instantiated for the double
junction, e.g., see the instantiation of clearTable in Figure 82. The ReleaseTable machine is
instantiated in a similar way.

clearTable = {A1 7→ {AA,AB}, A2 7→ {BZ}, A3 7→ {AB,AC,AD,AE},
B3 7→ {AB,AC,BW1,BW2,CM,CL},
A4 7→ {BV,BW1,BW2,BX,BY,BZ},
A5 7→ {AE}, A8 7→ {BU,BV}, A16 7→ {DR,BX,BY,BZ},
A17 7→ {CL}, A19 7→ {DP,DR}}

Figure 8: The clear table information as defined in ControlTable.

The Topology machine models which signals are associated with a route, the track where a
signal is situated, the track where points are situated and relations between tracks and possible
successor tracks. For example, Figure 9 illustrates the relation homeSignal and instantiates it for
the double junction example stating the signal S3 is associated with routes 3A and 3B and that it
is situated on track AA. The topology also provides all possible pairs of tracks and their successor
tracks.

Comparing the instantiation of our model with the double junction with the scheme plan given
in Figure 1 is straightforward. The railway engineers can easily work with the generic domain
definitions. The concrete data needed for the instantiation could, in principle, be automatically
derived from scheme plans in data formats used in the rail industry.

6 Verification

In this section we focus on the safety verification approach of our method. Aim is to verify
that the tables of a scheme plan are designed in such a way that only “safe” train movements
can happen. Given such result, established techniques such as the model-checking and slicing
approach of [JR11a] can then verify in a second step that the control program of an interlocking
correctly realises the scheme plan tables. Concerning tools, we rely on the PROB toolset [LB08]
to verify our CSP||B models as it supports B models that are controlled by CSP controllers. Fur-
thermore, ProB provides a user-friendly tooling environment that copes well with the complexity
of verifications.
1 CSP||B model download: http://www.csp-b.org/avocs2012-double-junction.zip
2 In PROB [LB08] 8A is represented as A8 since PROB does not allow names to begin with a numeral.
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signal ∈ ROUTE→ SIGNAL ∧
signal = {(A1 7→ S1),(A2 7→ S2),(A3 7→ S3),(B3 7→ S3),(A4 7→ S4),

(A5 7→ S5),(A8 7→ S8),(A16 7→ S16),(A17 7→ S17),(A19 7→ S19)}∧
homeSignal ∈ SIGNAL� TRACK ∧
homeSignal = {(S1 7→ Entry1),(S2 7→ BY),(S3 7→ AA),(S4 7→ BU),(S5 7→ AD),

(S8 7→ Entry2),(S16 7→ DP),(S17 7→ CM),(S19 7→ Entry3)} ∧
next ∈ TRACK↔ TRACK ∧
next = {(Entry1 7→ AA),(AA 7→ AB),(AB 7→ AC),(AC 7→ AD),(AD 7→ AE),

(AE 7→ Exit),(AC 7→ BW1),(BW1 7→ BW2),(BW2 7→ CM),
(CM 7→ CL),(CL 7→ Exit),(Entry2 7→ BU),(BU 7→ BV),(BV 7→ BW2),
(BW2 7→ BW1),(BW1 7→ BX),(BX 7→ BY),(BY 7→ BZ),(BZ 7→ Exit),
(Entry3 7→ DP),(DP 7→ DR),(DR 7→ BX),(Exit 7→ Exit)}

Figure 9: Definitions from Topology.

In carrying out our verification, our starting point is:

• that the generic descriptions in the B machines are correct;

• that the driving rules dictating how trains can move in the railway system in the CTRL are
correct; and

• that the safety conditions identified by CTL formulae faithfully represent the assumptions
identified in Section 2.

However, we make no assumptions about the correctness of the instantiations of the scheme plan
in the Topology, ControlTable and ReleaseTable. As such, our verification strategy resonates
closely with that of Haxthauhen et al. [HPK11].

Since we do not assume that the tables are correct, we cannot rely on a universal “once-and-
for-all” verification; each railway system (such as the double junction) has to be verified with
respect to its particular scheme plan – reflecting current practice in rail industry, where a control
table and release tables are individually designed for each track plan.

This notwithstanding, we can nonetheless outline a general strategy which can be followed for
any specific railway system. This strategy involves the following steps:

1. We first review the CTRL process in order to produce the most compact control process
possible, which we refer to as RESTRICTED CTRL. This means that we should remove
all the events which do not update the B state and hence have no impact on safety verifi-
cation. Typically, these events will be those that are in the alphabet of CTRL and not in
the alphabet of Interlocking and those events that report a response of no or false. This
step also involves replacing the internal choice operators with external choice operators in
order to make the RESTRICTED CTRL process deadlock free – which is justified as they
have the same semantics within the traces model which we employ for our safety analysis.

2. We then model check RESTRICTED CTRL ‖ Interlocking for deadlock-freedom and in-
variant violations. Since the invariants in the B machine do not capture our complete safety
check, this step simply gives confidence in the combination.
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1 collision = PRE existst1, t2 • t1 ∈ TRAIN∧ t2 ∈ TRAIN∧ t1 ∈ dom(pos)∧ t2 ∈ dom(pos)∧
2 pos(t1) /∈ EXIT ∧pos(t2) /∈ EXIT ∧ t1 6= t2 ∧pos(t1) = pos(t2)
3 THEN skip
4 END
5
6 derailment = PRE ∃ t • t ∈ TRAIN∧ t ∈ dom(pos)∧pos(t) = nullTrack
7 THEN skip
8 END

Figure 10: new collision and derailment operations in Interlocking machine.

3. Finally, we model check RESTRICTED CTRL ‖ Interlocking with respect to safety. In
order to do this, we must augment our model with specific error events, e.g., collision
and derailment (as depicted in Figure 10). These are events which should only be en-
abled when safety is violated. We achieve this by first introducing these operations in the
Interlocking machine, and then by augmenting the control process RESTRICTED CTRL
to be RESTRICTED CTRL ||| RUN({collision,derailment}). Then safety verification is
achieved by checking a CTL formula on the combination. We use the following CTL
formulae: AG(not e(collision)) and AG(not e(derailment)).

Failure of the CTL checking will enable us to identify errors in control and release tables,
and provide meaningful traces to demonstrate this violation.

An alternative approach that comes to mind for verifying safety is to strengthen the pos func-
tion in the invariant of Interlocking to pos ∈ TRAIN 7� TRACK; that is, to assert pos to be an
injective function, thus allowing at most one train on any one track and allowing trains to be
moved only to valid tracks. The reason we take the approach of using temporal logic formulae
is as follows. When combining CSP processes and B machines in parallel, we require the B
machines themselves to be consistent with respect to their invariants. However, the Interlocking
machine on its own would not be valid with respect to such a stronger invariant. In practice, the
temporal logic check gives us the same safety guarantee.

6.1 Safety Verification of the Double Junction

We considered four scenarios, and in each case used PROB to check the CTL formulae rep-
resenting safety in the model. The analysis results for these four scenarios are summarised in
Figure 11.
Scenario 1 - B model only: The B machine contains 220×44×210×29 states, since we have 20
tracks, 4 points, 10 routes, and 9 signals. It is not appropriate to consider verifying the safety of
a railway system by examining the Interlocking machine in isolation because the B model alone
does not place any constraints on train movements. Therefore it is no surprise that a collision
occurs. The following counter-example trace illustrates that both trains start on Entry1 and move
through the red light associated with signal S1 and then leads bertie to collide with albert on AA.

〈enter.albert.Entry1,move.albert.Entry1.AA,enter.bertie.Entry1,move.bertie.Entry1.AA〉

Scenario 2 - CSP||B model: We begin by identifying an appropriate restricted controller as
shown in Figure 12. Steps 2 and 3 of the verification strategy are then applied, resulting in all
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Description States
Checked

Result

1 B machines alone. No CSP: no driving rules,
so trains can always move

x Simple violation of collision

2 B machines and RESTRICTED CTRL, con-
strained to reduce state space

240,655 No violation

3 Faulty clear tracks for a route in control table 352,367 Violation trace with 22 events
found, leading to a collision

4 Faulty points in control table 20,109 Violation trace with 10 events
found, leading to a derailment

5 Alteration to Release Table 85,052 Violation trace with 9 events
found, leading to a derailment

Figure 11: Scenarios checked for the double junction.

1 removedEvents = {| stay |}∪{nextSignal.t.red | t ∈ TRAIN}∪{request.r.no,release.r.no | r ∈ ROUTE}
2 RESTRICTED CTRL = (CTRL[α(CTRL) || removedEvents]Stop) ||| RUN({collision,derailment})

Figure 12: Restriction of the CTRL process.

nodes being checked and the CTL formulae being true. In this case the train driving rules ensure
that collisions and derailments do not occur.

Scenario 3 - CSP||B model with faulty clear tracks for a route in control table: Suppose the
control table is adjusted to contain a mistake by omitting AC the tracks that should be clear to
grant route 3A. The clear table information in the B machine ControlTable, then, is as follows:

clearTable = {A1 7→ {AA,AB}, A2 7→ {BZ}, A3 7→ {AB,AD,AE},
B3 7→ {AB,AC,BW1,BW2,CM,CL},
A4 7→ {BV,BW1,BW2,BX,BY,BZ},
A5 7→ {AE}, A8 7→ {BU,BV}, A16 7→ {DR,BX,BY,BZ},
A17 7→ {CL}, A19 7→ {DP,DR}}

Then a trace with 22 events is produced as a counter-example for the CTL collision check, which
leads to a collision of the two trains on AD. Since clearTable(A3) does not take AC into consid-
eration, the fact that albert is already on AC is ignored. Consequently, as AB, AD and AE are not
occupied, the route is granted, then signal S3 is set to green and this enables bertie to make the
moves which lead to the collision.

Scenario 4 - CSP||B model with faulty points in control table: If the control table contains a
mistake on the directions of points, then this may also impact on safety. For example, suppose
P101 is the wrong way around in the control table for route 3A:

normalTable = {A4 7→ P101,A4 7→ P102,A4 7→ P103,A4 7→ P104} ∧
reverseTable = {A3 7→ P101,B3 7→ P101,B3 7→ P102,B3 7→ P103,B3 7→ P104,

A16 7→ P102}
Then, by checking the CTL formula for no derailment, PROB gives a counter-example trace
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showing that albert derails when moving from BW1, bertie is not involved in this trace. Albert
requests route 3A but the points P101 direct him to BW1, however P103 is set to normal causing
albert’s derailment. Less of the state space needed to be explored before this became apparent
to discover generate this trace.

Scenario 5 - CSP||B model with alteration to release table: If the release table contains a
mistake so that a lock is released too early, then this may also impact on safety. For example,
suppose the lock P102 for route 16A is now released when a train occupies DR, i.e., (DR 7→
(A16,P102) is included in the releaseTable instead of (BY 7→ (A16,P102)). The CTL derailment
check yields a counter-example trace comprised of 9 events where albert moves from DR into
nullTrack as P102 is not in the reverse position. This is caused by the fact that (i) P102 is released
too early when albert is on DR and, hence, (ii) there is a request for A4 which is successfully
granted and moves P102 into the normal position.

The railway engineers consider the counter-example traces above as informative, especially
in combination with the possibility to explore the whole state space along these traces in PROB.
From the engineer’s point of view, the above scenarios represent design errors typical in the
production of scheme plans.

7 Related work

Our work builds upon prior approaches to the modelling and verification of railways. [BG00,
LFFP11, Sab12] are prominent examples from the B community, [SWD97, Mor93] are classical
contributions from process algebra, [HP00, JR11b] use techniques from Algebraic Specification.
On a lower abstraction layer [FH98, FMGF11, JR11a] verify the safety of interlocking programs
with logical approaches.

7.1 Modelling comparison

In this paper we have applied our modelling strategy to the double junction. Our modelling is
most related to Winter’s approach in CSP [Win02] and Abrial’s modelling in Event-B [Abr10].

Winter [Win02] presents a generic, event-based railway model in CSP as well as generic for-
mulations of two safety properties: CollisionFreedom and NoMovingPoints. Overall, this results
in a generic architecture and a natural representation of two safety properties. Traceability, how-
ever, is limited. There are relations in the model which are derived from the control table. For
example, the driving rule “trains stop at a red signal” is distributed over different parts of the
model: it is a consequence of the fact that (1) the event “move to the first track protected by a
signal” belongs to a specific synchronziation set and (2) a red signal does not offer this event.
Purely event-based modelling leads to such decentralized control. Consequently, the model has
no interlocking cycle.

Chapter 17 of the book by Abrial [Abr10] gives an excellent detailed description and analysis
of the railway domain, deriving a total of 39 different requirements. The modelling approach
is generic, even though no concrete model is proven to be correct. Traceability in a tower of
specifications can be complex for various reasons. For instance, a requirement can be the con-

Proc. AVoCS 2012 12 / 15



ECEASST

sequence of invariants from different levels. The relation between intended properties and the
model remains an informal one. This is in contrast to other approaches (including Winter’s and
our own) which directly represent the intended property in the formal world and then prove that
the modelled property is a mathematical consequence of the formal model. Furthermore, the
approach is monolithic: behaviour is not attached to different entities to which they relate.

The model of the double junction means that a train always occupies one track (segment) only.
We recognise that in more complex systems we will need to consider the length of the train, as
has been done by Winter et al. [WR03], so that a train can occupy more than one segment at the
same time.

7.2 Verification comparison

The focus of our paper has been on safety verification using model checking in PROB. Model
checking is becoming more recognised as an industrial technique [FG11] and therefore it is
important to discuss it in the context of scalability. Ferrari et al. [FMGF11] state that model
checking large interlocking systems is unfeasible with current state-of-the-art model checkers, in
particular SPIN and NuSMV. However, James et al. [JR11a] clearly demonstrate better results
and the feasibility of the lower level approach involving program slicing. A detailed comparison
with these approaches is not appropriate since our approach is at a higher level of abstraction.
The justification for this higher level of abstraction is that the industrial partners wish to have
feedback on interlocking systems already during the design stage.

Nonetheless, as is the case in [FMGF11], we successfully use CTL formulae to capture safety
requirements. The example given in [FMGF11] illustrates that a point should not be moved
while a train occupies the track containing the point. In this paper we have not modelled moving
points but we would expect to use a similar property in future work.

We recognise that compositional verification will need to be considered when the models do
become very large. Winter et al. [WR03] already propose some decomposition techniques; op-
timising an ASM model and using SMV model checking. Our current verification strategy also
recognises the need for optimisation. First experiments with abstration techniques show promis-
ing results. Furthermore, we will also consider, in the future, composing track plans together
to define larger ones. To this end, we will explore the possibility of developing new composi-
tional verification techniques in our CSP||B approach to establish that: if different scheme plans
invidually preseve safety then their composition will also preserve safety.

8 Conclusion

Through our association with Invensys Rail, we are working towards deriving railway models
which are formal and analysable by current verification technologies, yet are fully faithful; we
do not want to hide the engineering understandings held by our industrial partners in clever
abstract encodings. Despite being expressed in the mathematical language of formal methods,
our models must be immediately understandable — and verifiable — by our industrial partners.

This has proven to be a challenge, as we find that the extant approaches to railway modelling
have been hindered in this respect by the framework in which they have been carried out. As
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explained above, modelling in the railway domain involves event-based components as well as
state-based components. Using a solely-event-based framework or a solely-state-based frame-
work succeeds in faithfully representing the relevant components, yet suffers in representing
other components through encodings which — whilst clever feats of abstract modelling — are
not easily appreciated by the working railway engineer.

Future work will extend the analysis to handle emergency stops (trains passing red signals and
stopping in the following track segment) by extending the driving rules. We will also include
points moving under trains more explicitly in the model. As well as safety, the model is suitable
for analysing the capacity of the track plan: the maximum number of trains it can hold without
compromising safety, and this will lead to the investigation of extending CSP||B to handle time.

Acknowledgement: The authors would like to thank Simon Chadwick and Dominic Taylor
from the company Invensys Rail for their support, contribution and encouraging feedback. A
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